Familial Adenomatous Polyposis Is Associated with a Marked Decrease in Alkaline Sphingomyelinase Activity: a Key Factor to the U
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guidelines for the Management of Hereditary Colorectal Cancer
Guidelines Guidelines for the management of hereditary Gut: first published as 10.1136/gutjnl-2019-319915 on 28 November 2019. Downloaded from colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/ United Kingdom Cancer Genetics Group (UKCGG) Kevin J Monahan ,1,2 Nicola Bradshaw,3 Sunil Dolwani,4 Bianca Desouza,5 Malcolm G Dunlop,6 James E East,7,8 Mohammad Ilyas,9 Asha Kaur,10 Fiona Lalloo,11 Andrew Latchford,12 Matthew D Rutter ,13,14 Ian Tomlinson ,15,16 Huw J W Thomas,1,2 James Hill,11 Hereditary CRC guidelines eDelphi consensus group ► Additional material is ABSTRact having a family history of a first-degree relative published online only. To view Heritable factors account for approximately 35% of (FDR) or second degree relative (SDR) with CRC.2 please visit the journal online (http:// dx. doi. org/ 10. 1136/ colorectal cancer (CRC) risk, and almost 30% of the While highly penetrant syndromes such as Lynch gutjnl- 2019- 319915). population in the UK have a family history of CRC. syndrome (LS), familial adenomatous polyposis (FAP) The quantification of an individual’s lifetime risk of and other polyposis syndromes account for account For numbered affiliations see end of article. gastrointestinal cancer may incorporate clinical and for only 5–10% of all CRC diagnoses, advances molecular data, and depends on accurate phenotypic in genetic diagnosis, improvements in endoscopic Correspondence to assessment and genetic diagnosis. In turn this may surgical control, and medical and lifestyle interven- Dr Kevin J Monahan, Family facilitate targeted risk-reducing interventions, including tions provide opportunities for CRC prevention and Cancer Clinic, St Mark’s endoscopic surveillance, preventative surgery and effective treatment in susceptible individuals. -
The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D
CLINICAL PRACTICE GUIDELINES The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D. • Karin Hardimann, M.D. • Martin Weiser, M.D. • Nancy Yu, M.D. Ian Paquette, M.D. • Daniel L. Feingold, M.D. • Scott R. Steele, M.D. Prepared by the Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons METHODOLOGY (ASCRS) is dedicated to ensuring high-quality pa- tient care by advancing the science, prevention, and These guidelines are built on the last set of the ASCRS T Practice Parameters for the Identification and Testing of management of disorders and diseases of the colon, rectum, Patients at Risk for Dominantly Inherited Colorectal Can- and anus. The Clinical Practice Guidelines Committee is 1 composed of society members who are chosen because they cer published in 2003. An organized search of MEDLINE have demonstrated expertise in the specialty of colon and (1946 to December week 1, 2016) was performed from rectal surgery. This committee was created to lead interna- 1946 through week 4 of September 2016 (Fig. 1). Subject tional efforts in defining quality care for conditions related headings for “adenomatous polyposis coli” (4203 results) to the colon, rectum, and anus, in addition to the devel- and “intestinal polyposis” (445 results) were included, us- opment of Clinical Practice Guidelines based on the best ing focused search. The results were combined (4629 re- available evidence. These guidelines are inclusive and not sults) and limited to English language (3981 results), then prescriptive. -
Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer. -
Familial Adenomatous Polyposis and MUTYH-Associated Polyposis
Corporate Medical Policy Familial Adenomatous Polyposis and MUTYH-Associated Polyposis AHS-M2024 File Name: familial_adenomatous_polyposis_and_mutyh_associated_polyposis Origination: 1/1/2019 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Familial adenomatous polyposis (FAP) is characterized by development of adenomatous polyps and an increased risk of colorectal cancer (CRC) caused by an autosomal dominant mutation in the APC (Adenomatous Polyposis Coli) gene (Kinzler & Vogelstein, 1996). Depending on the location of the mutation in the APC gene FAP can present as the more severe classic FAP (CFAP) with hundreds to thousands of polyps developing in the teenage years associated with a significantly increased risk of CRC, or attenuated FAP (AFAP) with fewer polyps, developing later in life and less risk of CRC (Brosens, Offerhaus, & Giardiello 2015; Spirio et al., 1993). Two other subtypes of FAP include Gardner syndrome, which causes non-cancer tumors of the skin, soft tissues, and bones, and Turcot syndrome, a rare inherited condition in which individuals have a higher risk of adenomatous polyps and colorectal cancer. In classic FAP, the most common type, patients usually develop cancer in one or more polyps as early as age 20, and almost all classic FAP patients have CRC by the age of 40 if their colon has not been removed (American_Cancer_Society, 2020). MUTYH-associated polyposis (MAP) results from an autosomal recessive mutation of both alleles of the MUTYH gene and is characterized by increased risk of CRC with development of adenomatous polyps. This condition, however, may present without these characteristic polyps (M. -
Multiple Endocrine Neoplasia Type 1 (MEN1)
Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas. -
Effect Modification of Vitamin D Supplementation By
nutrients Article Effect Modification of Vitamin D Supplementation by Histopathological Characteristics on Survival of Patients with Digestive Tract Cancer: Post Hoc Analysis of the AMATERASU Randomized Clinical Trial Hideyuki Yonaga 1,2, Shinya Okada 3 , Taisuke Akutsu 1, Hironori Ohdaira 4, Yutaka Suzuki 4 and Mitsuyoshi Urashima 1,* 1 Division of Molecular Epidemiology, The Jikei University School of Medicine, 3–25–8, Nishi-Shimbashi, Minato-Ku, Tokyo 105-8461, Japan; [email protected] (H.Y.); [email protected] (T.A.) 2 Celgene K. K., JP TOWER 2–7–2 Marunouchi Chiyoda-ku, Tokyo 100-7010, Japan; [email protected] 3 Department of Pathology, International University of Health and Welfare Hospital, 537–3 Iguchi, Nasushiobara, Tochigi 329-2763, Japan; [email protected] 4 Department of Surgery, International University of Health and Welfare Hospital, 537–3 Iguchi, Nasushiobara, Tochigi 329-2763, Japan; [email protected] (H.O.); [email protected] (Y.S.) * Correspondence: [email protected]; Tel.: +81-3-3433-1111 (ext. 2405) Received: 13 September 2019; Accepted: 21 October 2019; Published: 22 October 2019 Abstract: Some coauthors of this study previously performed the AMATERASU randomized, double-blind, placebo-controlled trial of postoperative oral vitamin D supplementation (2000 IU/day) in 417 patients with stage I to III digestive tract cancer from the esophagus to the rectum who underwent curative surgery (UMIN000001977). We conducted a post-hoc analysis of the AMATERASU trial to explore the effects of modification of vitamin D supplementation by histopathological characteristics on survival. Among patients with poorly differentiated adenocarcinoma, the 5-year relapse-free survival rate of patients supplemented with vitamin D was 91% compared with 63% in the placebo group (hazard ratio [HR], 0.25; 95% confidence interval [CI], 0.08 to 0.78; P = 0.017; P for interaction = 0.023). -
Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756 -
Risk Factors Associated with Rectal Neuroendocrine Tumors: a Cross-Sectional Study
Author Manuscript Published OnlineFirst on May 9, 2014; DOI: 10.1158/1055-9965.EPI-14-0132 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Risk Factors Associated with Rectal Neuroendocrine Tumors: A Cross-Sectional Study Yoon Suk Jung1, Kyung Eun Yun2, Yoosoo Chang2,3, Seungho Ryu2,3, Jung Ho Park1, Hong Joo Kim1, Yong Kyun Cho1, Chong Il Sohn1, Woo Kyu Jeon1, Byung Ik Kim1, and Dong Il Park1 1Department of Internal Medicine, 2Center for Cohort Studies, Total Healthcare Center, 3Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea Running title: Risk factors for rectal neuroendocrine tumors Corresponding author: Dong Il Park, MD, PhD Department of Internal Medicine Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine 108, Pyung-Dong, Jongro-Ku, Seoul, Korea 110-746 Phone: +82-2-2001-2059, Fax: +82-2-2001-2049 E-mail: [email protected] Disclosure of Potential Conflicts of Interest: We have nothing to disclose. 1 Downloaded from cebp.aacrjournals.org on October 1, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 9, 2014; DOI: 10.1158/1055-9965.EPI-14-0132 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Background: The incidence of rectal neuroendocrine tumors (NETs) has been increasing since the implementation of the screening colonoscopy. However, very little is known about risk factors associated with rectal NETs. We examined the prevalence of and the risk factors for rectal NETs in a Korean population. -
(ACRCSP) Post Polypectomy Surveillance Guidelines
Alberta Colorectal Cancer Screening Program (ACRCSP) Post Polypectomy Surveillance Guidelines June 2013 ACRCSP Post Polypectomy Surveillance Guidelines - 2 TABLE OF CONTENTS Background ………………………………………………………………………………………... 3 Terms, Definitions and Practical Points……………………………………………………….. 4 Post Colonoscopy Screening……………………………………………………………………. 5 Post Polypectomy Surveillance…………………………………………………………………..6 References ………………………………………………………………………………………….12 ACRCSP Post Polypectomy Surveillance Guidelines - 3 Background Adherence to evidence based guidelines is supported by the reduction of interval colorectal cancers and colorectal cancer (CRC)- related mortality. Surveillance interval guidelines are based on the presumption that a high quality baseline colonoscopy was performed (i.e. that the colonoscopy was completed to the cecum, and that the colonic mucosa was well visualized). It is also important to ensure the completeness of polypectomy and that all polypectomy material was sent to pathology. Patients with a failed colonoscopy (for example due to inability to reach cecum or poor bowel preparation) should undergo repeat colonoscopy (either by same operator or referred, depending on the reason why the colonoscopy was incomplete) or, less preferably, diagnostic imaging of the colon by CT colonography. A system should be in place to ensure that all pathology reports are reviewed and that recommendations to primary care physician regarding surveillance intervals are adjusted as indicated. Endoscopists should make clear recommendations to primary care physicians about the need for and timing of subsequent colonoscopy. Considering that the recommendation largely depends on the histological findings, interval recommendation in patients with polyps should account for the pathology report instead of being made at the time of colonoscopy. The decision regarding surveillance interval should be based on the most advanced finding(s) at baseline colonoscopy. -
Location of Colorectal Adenomas and Serrated Polyps in Patients Under Age 50
International Journal of Colorectal Disease (2019) 34:2201–2204 https://doi.org/10.1007/s00384-019-03445-5 SHORT COMMUNICATION Location of colorectal adenomas and serrated polyps in patients under age 50 Zexian Chen1,2 & Jiancong Hu1,2 & Zheyu Zheng1,2 & Chao Wang3 & Dezheng Lin1 & Yan Huang3 & Ping Lan1,2 & Xiaosheng He1,2 Accepted: 25 October 2019 /Published online: 18 November 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Background The incidence of colorectal cancer, especially located in distal colorectum, is rising markedly in young patients. Conventional adenomas and serrated polyps have been widely recognized as precursors of colorectal cancer. Aim To investigate the correlation of polyp feature with polyp location in patients under age 50. Method Patients under age 50 who had received colonoscopy were included from 2010 to 2018. Clinical data including number, location, size, and histopathology of polyps were collected. Odd ratios and 95% confidence interval of adenomas with their location were calculated. Result In total, 25,636 patients aged 18–49 were enrolled, among which 4485 patients had polyps, with polyp detection rate of 17.5%. A total of 2484 and 2387 patients had conventional adenomas and serrated polyps, respectively. 76.0% advanced adenomas and 69.5% ≥ 10-mm serrated polyps were located in the distal colorectum. The detection rate of advanced adenomas was higher in patients aged 45–49. Patients with adenomas especially advanced adenomas in the distal colorectum were more likely to have advanced adenoma in the proximal colon. Conclusion Among patients under age 50, advanced adenomas and ≥ 10-mm serrated polyps were predominantly in the distal colorectum. -
Increased EZH2 Expression During the Adenoma‑Carcinoma Sequence in Colorectal Cancer
ONCOLOGY LETTERS 16: 5275-5281, 2018 Increased EZH2 expression during the adenoma‑carcinoma sequence in colorectal cancer MAYUKO OHUCHI1, YASUO SAKAMOTO1, RYUMA TOKUNAGA1, YUKI KIYOZUMI1, KENICHI NAKAMURA1, DAISUKE IZUMI1, KEISUKE KOSUMI1, KAZUTO HARADA1, JUNJI KURASHIGE1, MASAAKI IWATSUKI1, YOSHIFUMI BABA1, YUJI MIYAMOTO1, NAOYA YOSHIDA1, TAKASHI SHONO2, HIDEAKI NAOE2, YUTAKA SASAKI2 and HIDEO BABA1 Departments of 1Gastroenterological Surgery, and 2Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan Received December 13, 2016; Accepted May 11, 2017 DOI: 10.3892/ol.2018.9240 Abstract. The adenoma-carcinoma sequence, the sequential from formalin‑fixed paraffin‑embedded blocks and reverse mutation and deletion of various genes by which colorectal transcription-quantitative polymerase chain reaction analysis cancer progresses, is a well-established and accepted concept of these genes was performed. Ki-67 and EZH2 expression of colorectal cancer carcinogenesis. Proteins of the polycomb scores increased significantly during the progression of repressive complex 2 (PRC2) function as transcriptional normal mucosa to adenoma and carcinoma (P=0.009), and repressors by trimethylating histone H3 at lysine 27; the EZH2 expression score was positively associated with Ki-67 activity of this complex is essential for cell proliferation expression score (P=0.02). Conversely, p21 mRNA and and differentiation. The histone methyltransferase enhancer protein expression decreased significantly, whereas expression of zeste homolog 2 (EZH2), an essential component of of p27 and p16 did not change significantly. During the PRC2, is associated with the transcriptional repression of carcinogenesis sequence from normal mucosa to adenoma and tumor suppressor genes. EZH2 expression has previously carcinoma, EZH2 expression increased and p21 expression been reported to increase with the progression of pancreatic decreased significantly. -
Copyrighted Material
Subject index Note: page numbers in italics refer to fi gures, those in bold refer to tables Abbreviations used in subentries abdominal mass patterns 781–782 GERD – gastroesophageal refl ux disease choledochal cysts 1850 perception 781 IBD – infl ammatory bowel disease mesenteric panniculitis 2208 periodicity 708–709 mesenteric tumors 2210 peripheral neurogenic 2429 A omental tumors 2210 pharmacological management 714–717 ABCB1/MDR1 484 , 633 , 634–636 abdominal migrane (AM) 712 , 2428–2429 physical examination 709–710 , 710 ABCB4 abdominal obesity 2230 postprandial 2498–2499 c h o l e s t e r o l g a l l s t o n e s 1817–1818 , abdominal pain 695–722 in pregnancy 842 1819–1820 a c u t e see acute abdominal pain prevalence 695 functions 483–484 , 1813 acute cholecystitis 784 rare/obscure causes 712–713 , 712 intrahepatic cholestasis of pregnancy 848 acute diverticulitis 794–796 , 795 , 1523–1524 , red fl ags 713 low phospholipid-associated 1527 relieving/aggravating factors 709 cholelithiasis 1810 , 1819–1820 , 2393 acute mesenteric ischemia 2492 right lower quadrant 794 m u t a t i o n p h e n o t y p e s 2392 , 2393 a c u t e p a n c r e a t i t i s 795 , 1653 , 1667 right upper quadrant 794 progressive familial intrahepatic cholestasis-3 acute suppurative peritonitis 2196 sickle cell crisis 2419 494 adhesions 713 s i t e 703 , 708 ABCB11 see bile salt export pump (BSEP) AIDS 2200 special pain syndromes 718–720 ABCC2/MRP2 485 , 494 , 870 , 1813 , 2394 , 2395 anxiety 706–707 sphincter of Oddi dysfunction 1877 ABCG2/BCRP 484–485 , 633