Adenoma Versus Carcinoid Tumor of the Middle Ear: a Study of 48 Cases and Review of the Literature Kevin R

Total Page:16

File Type:pdf, Size:1020Kb

Adenoma Versus Carcinoid Tumor of the Middle Ear: a Study of 48 Cases and Review of the Literature Kevin R Adenoma versus Carcinoid Tumor of the Middle Ear: a Study of 48 Cases and Review of the Literature Kevin R. Torske, D.D.S., M.S., Lester D.R. Thompson, M.D. Department of Endocrine and Otorhinolaryngic–Head and Neck Pathology, Armed Forces Institute of Pathology, Washington, D.C. showed adenomas and carcinoid tumors of the mid- Carcinoid tumors and adenomas of the middle ear dle ear to be essentially indistinguishable benign are rare neoplasms of indeterminate relationship to tumors. Middle ear adenoma most correctly de- one another. Indeed, the literature is devoid of a scribes their morphologic features and clinical be- large comprehensive series that evaluates the clini- havior, although neuroendocrine adenoma of the cal, histologic, and immunophenotypic features of middle ear may be a more accurate designation. these tumors and their potential relationship. Forty-eight cases of middle ear adenoma between KEY WORDS: Adenoma, Carcinoid, Immunohisto- 1970 and 1995 were identified in the files of the chemistry, Middle ear, Prognosis. Armed Forces Institute of Pathology. All cases were Mod Pathol 2002;15(5):543–555 evaluated for cytomorphology and architectural pattern, in addition to their reactivity with various Adenomas and carcinoid tumors of the middle ear immunohistochemical reagents. Clinical follow-up are rare neoplasms with similar, if not indistin- was also obtained. A comprehensive review of the guishable, morphologies. First described in 1976 (1, literature was performed with an eye toward corre- 2) and further elaborated upon in 1980 (3), these lating any distinct differences or similarities be- tumors have been the subject of much debate with tween carcinoid tumors and adenomas of the mid- regard to their similarities, differences, etiologies, dle ear. The patients included 21 women and 27 and prognoses. Limited mostly to case reports and men, aged 20 to 80 years (mean, 45.0 y). Patients small series, the English-language literature is de- experienced hearing loss, mass, and/or pain for a void of a large comprehensive evaluation of these mean duration of 1.7 years. The mean tumor size tumors with respect to their histomorphology, im- was 0.8 cm, with six tumors extending beyond the munohistochemical reactivity, treatment out- middle ear. Histologically, the tumors were moder- comes, and clinical behavior. We elected to under- ately cellular and unencapsulated, arranged in glan- take such a study with an eye toward identifying dular, trabecular, and solid patterns composed of any distinct separation of these two tumors. small cells with “salt and pepper” nuclear chroma- tin distribution. The tumor cells were immunoreac- tive with keratin, keratin 7, chromogranin, and hu- MATERIALS AND METHODS man pancreatic polypeptide. All patients had The records of 68 patients with tumors diagnosed surgery. No patients died with their disease (mean as “middle ear adenoma,” “ceruminal gland adeno- follow-up, 15.7 y). Eight patients developed recur- ma,” and “atypical middle ear adenoma” were rences that were treated surgically and were with- identified in the files of the Otorhinolaryngic-Head out evidence of disease at last follow-up (mean, & Neck Registry at the Armed Forces Institute of 15.1 y). Our study and the review of the literature pathology from 1970 to 1995. No records of “carci- noid tumors” of the middle ear were located in the registry. This lack was considered not to be due to Copyright © 2002 by The United States and Canadian Academy of Pathology, Inc. the true absence of such a tumor but more to the VOL. 15, NO. 5, P. 543, 2002 Printed in the U.S.A. preferred designation of this tumor as “middle ear Date of acceptance: January 30, 2002. The opinions or assertions contained herein are the private views of the adenoma” by Dr. Hyams and his colleagues within authors and are not to be construed as official or as reflecting the views of the Department of Otorhinolaryngic Pathology. the Department of the Navy or Department of Defense. Address reprint requests to: Lester D.R. Thompson, M.D., Department of These 68 patients were identified in a review of Endocrine and Otorhinolaryngic–Head and Neck Pathology, Building 54, 1,703 patients with primary benign or malignant Room G066–11, Armed Forces Institute of Pathology, 6825 16th Street NW, Washington, DC 20306–6000; e-mail: [email protected]; fax: neoplasms of the ear seen in consultation during 202-782-3130. this same time period. However, 20 patients were 543 excluded from further consideration because of at The macroscopic pathologic observations noted least one of the following reasons: (1) paraffin within this study were garnered from the individual blocks were unavailable for additional sections or gross descriptions of the neoplasms by the contrib- immunophenotypic analysis (2); the original sub- uting pathologists. Hematoxylin and eosin–stained mitted case did not have sufficient demographic slides from all patients were reviewed for morpho- information supplied from which to obtain ade- logic assessment of middle-ear adenoma/carci- quate follow-up information; and (3) the cases were noid, as originally defined by both Hyams et al. and diagnosed indefinitely, using terms such as consis- Murphy et al. (2, 3) A number of macroscopic and tent with, suggestive of, or suspicious for, which histologic observations were recorded for each tu- usually indicated a lack of sufficient diagnostic ma- mor as follows: exact tumor location; tumor size terial from which to proffer a definitive diagnosis. (greatest dimension in centimeters); tumor encap- Therefore, the remaining 48 patients with middle- sulation (presence or absence); tumor extension ear adenomas (2.8% of all ear neoplasms within the (mastoid bone, eustachian tube, and/or external files of the AFIP) compose the subject of this study auditory canal); architectural pattern of growth based on adequate hematoxylin and eosin-stained (solid, trabecular, organoid, infiltrating, and/or slides to make a definitive diagnosis and adequate glandular); surface origin or pagetoid spread; pres- demographic information for initial attempt at ence or absence of necrosis; tumor cellularity (low, follow-up. Forty-three cases were obtained from moderate, or high); mitotic figures (number of mi- civilian sources, including university medical cen- totic figures per 10 high power fields [magnification ters and foreign contributors, four cases from mil- at 40ϫ with a 10ϫ objective lens using an Olympus itary hospitals, and one case from a Veterans Ad- BX40 microscope]); atypical mitotic figures (present ministration medical center. or absent, and defined by abnormal chromosome Materials within the Institute’s files were supple- spread, tripolar or quadripolar forms, circular mented by a review of the patient demographics forms, or indescribably bizarre); nuclear pleomor- (gender, age) and symptoms at presentation (mass, phism (mild, moderate or severe); presence or ab- hearing loss, bleeding, infection, pain, nerve paral- sence of nucleoli; and the presence of other micro- ysis, discharge, equilibrium changes, tinnitus, scopic pathologic findings. and/or popping), including duration. In addition, Immunophenotypic analysis was performed in we reviewed radiographic, surgical pathology, and all cases with suitable material by the standardized operative reports, and obtained follow-up informa- avidin–biotin method of Hsu et al. (4) employing tion from oncology data services by written ques- 4-␮m-thick, formalin-fixed, paraffin-embedded tionnaires or direct communication with the treat- sections. Table 1 documents the pertinent, com- ing physician(s) or the patient. Follow-up data, mercially available immunohistochemical antibody available for 45 patients, included information re- panel used. The analysis was performed on a single garding tumor location, presence of recurrent or representative block in each primary tumor. When metastatic disease, treatment modalities used, and required, proteolytic antigen retrieval was per- the current patient and disease status. This clinical formed by predigestion for 3 minutes with 0.05% investigation was conducted in accordance and Protease VIII (Sigma Chemical Co., St. Louis, MO) compliance with all statutes, directives, and guide- in a 0.1 M phosphate buffer, pH of 7.8, at 37 ° C. lines of the Code of Federal Regulations, Title 45, Cellular conditioning to achieve antigen enhance- Part 46, and the Department of Defense Directive ment (recovery) was performed by using formalin- 3216.2 relating to human subjects in research. fixed, paraffin-embedded tissue treated with a buff- Table 1. Immunohistochemical Panel Primary Antigen or Antibody Company Dilution Antigen Recovery Antibody Cytokeratin Boehringer Mannheim AE1/AE3 mm Biochemicals, Indianapolis, IN, 1:50 Enzyme digestion CK1 mm and DAKO, Carpinteria, CA 1:200 Keratin 7 mm DAKO 1:200 Enzyme digestion Keratin 20 mm DAKO 1:50 Enzyme digestion CAM5.2 mm Becton Dickson, San Jose, CA 1:100 Enzyme digestion Chromogranin mm Boehringer Mannheim 1:3,200 None Synaptophysin rp DAKO Neat Enzyme digestion Serotonin mm DAKO 1:25 None Neuron-specific enolase rp Ventana, Tucson, AZ Neat None Human pancreatic polypeptide mm DAKO 1:1000 None S-100 protein rp DAKO 1:800 None Vimentin mm BioGenex Labs, San Ramon, CA 1:400 Microwave recovery mm, mouse monoclonal; rp, rabbit polyclonal. 544 Modern Pathology ered citric acid solution and heated for 20 minutes changes (n ϭ 7 patients), tinnitus or popping (n ϭ in a calibrated microwave oven. Afterwards, the 6
Recommended publications
  • Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
    American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer.
    [Show full text]
  • Familial Adenomatous Polyposis and MUTYH-Associated Polyposis
    Corporate Medical Policy Familial Adenomatous Polyposis and MUTYH-Associated Polyposis AHS-M2024 File Name: familial_adenomatous_polyposis_and_mutyh_associated_polyposis Origination: 1/1/2019 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Familial adenomatous polyposis (FAP) is characterized by development of adenomatous polyps and an increased risk of colorectal cancer (CRC) caused by an autosomal dominant mutation in the APC (Adenomatous Polyposis Coli) gene (Kinzler & Vogelstein, 1996). Depending on the location of the mutation in the APC gene FAP can present as the more severe classic FAP (CFAP) with hundreds to thousands of polyps developing in the teenage years associated with a significantly increased risk of CRC, or attenuated FAP (AFAP) with fewer polyps, developing later in life and less risk of CRC (Brosens, Offerhaus, & Giardiello 2015; Spirio et al., 1993). Two other subtypes of FAP include Gardner syndrome, which causes non-cancer tumors of the skin, soft tissues, and bones, and Turcot syndrome, a rare inherited condition in which individuals have a higher risk of adenomatous polyps and colorectal cancer. In classic FAP, the most common type, patients usually develop cancer in one or more polyps as early as age 20, and almost all classic FAP patients have CRC by the age of 40 if their colon has not been removed (American_Cancer_Society, 2020). MUTYH-associated polyposis (MAP) results from an autosomal recessive mutation of both alleles of the MUTYH gene and is characterized by increased risk of CRC with development of adenomatous polyps. This condition, however, may present without these characteristic polyps (M.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 1 (MEN1)
    Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
    GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756
    [Show full text]
  • Pituitary Adenomas: from Diagnosis to Therapeutics
    biomedicines Review Pituitary Adenomas: From Diagnosis to Therapeutics Samridhi Banskota 1 and David C. Adamson 1,2,3,* 1 School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] 2 Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA 3 Neurosurgery, Atlanta VA Healthcare System, Decatur, GA 30322, USA * Correspondence: [email protected] Abstract: Pituitary adenomas are tumors that arise in the anterior pituitary gland. They are the third most common cause of central nervous system (CNS) tumors among adults. Most adenomas are benign and exert their effect via excess hormone secretion or mass effect. Clinical presentation of pituitary adenoma varies based on their size and hormone secreted. Here, we review some of the most common types of pituitary adenomas, their clinical presentation, and current diagnostic and therapeutic strategies. Keywords: pituitary adenoma; prolactinoma; acromegaly; Cushing’s; transsphenoidal; CNS tumor 1. Introduction The pituitary gland is located at the base of the brain, coming off the inferior hy- pothalamus, and weighs no more than half a gram. The pituitary gland is often referred to as the “master gland” and is the most important endocrine gland in the body because it regulates vital hormone secretion [1]. These hormones are responsible for vital bodily Citation: Banskota, S.; Adamson, functions, such as growth, blood pressure, reproduction, and metabolism [2]. Anatomically, D.C. Pituitary Adenomas: From the pituitary gland is divided into three lobes: anterior, intermediate, and posterior. The Diagnosis to Therapeutics. anterior lobe is composed of several endocrine cells, such as lactotropes, somatotropes, and Biomedicines 2021, 9, 494. https: corticotropes, which synthesize and secrete specific hormones.
    [Show full text]
  • Prevention and Management of Duodenal Polyps in Familial Adenomatous Polyposis
    RECENT ADVANCES IN CLINICAL PRACTICE PREVENTION AND MANAGEMENT OF DUODENAL POLYPS IN FAMILIAL Gut: first published as 10.1136/gut.2004.053843 on 10 June 2005. Downloaded from 1034 ADENOMATOUS POLYPOSIS L A A Brosens, J J Keller, G J A Offerhaus, M Goggins, F M Giardiello Gut 2005;54:1034–1043. doi: 10.1136/gut.2004.053843 amilial adenomatous polyposis (FAP) is one of two well described forms of hereditary colorectal cancer. The primary cause of death from this syndrome is colorectal cancer which inevitably Fdevelops usually by the fifth decade of life. Screening by genetic testing and endoscopy in concert with prophylactic surgery has significantly improved the overall survival of FAP patients. However, less well appreciated by medical providers is the second leading cause of death in FAP, duodenal adenocarcinoma. This review will discuss the clinicopathological features, management, and prevention of duodenal neoplasia in patients with familial adenomatous polyposis. c FAMILIAL ADENOMATOUS POLYPOSIS FAP is an autosomal dominant disorder caused by a germline mutation in the adenomatous polyposis coli (APC) gene. FAP is characterised by the development of multiple (>100) adenomas in the colorectum. Colorectal polyposis develops by age 15 years in 50% and age 35 years in 95% of patients. The lifetime risk of colorectal carcinoma is virtually 100% if patients are not treated by colectomy.1 Patients with FAP can also develop a wide variety of extraintestinal findings. These include cutaneous lesions (lipomas, fibromas, and sebaceous and epidermoid cysts), desmoid tumours, osteomas, occult radio-opaque jaw lesions, dental abnormalities, congenital hypertrophy of the retinal pigment epithelium, and nasopharyngeal angiofibroma.
    [Show full text]
  • Galactorrhoea, Hyperprolactinaemia, and Pituitary Adenoma Presenting During Metoclopramide Therapy B
    Postgrad Med J: first published as 10.1136/pgmj.58.679.314 on 1 May 1982. Downloaded from Postgraduate Medical Journal (May 1982) 58, 314-315 Galactorrhoea, hyperprolactinaemia, and pituitary adenoma presenting during metoclopramide therapy B. T. COOPER* R. A. MOUNTFORD* M.D., M.R.C.P. M.D., M.R.C.P. C. MCKEEt B.Pharm, M.P.S. *Department ofMedicine, University of Bristol and tRegional Drug Information Centre Bristol Royal Infirmary, Bristol BS2 8HW Summary underwent hysterectomy for dysfunctional uterine A 49-year-old woman presented with a one month bleeding. There were no abnormal features on ex- history of headaches, loss of libido and galactorrhoea. amination. In May 1979, she was admitted for in- She had been taking metoclopramide for the previous vestigation but the only abnormality found was 3 months for reflux oesophagitis. She was found to reflux oesophagitis. She was treated with cimetidine have substantially elevated serum prolactin levels and and antacid (Gaviscon) over the subsequent 10 a pituitary adenoma, which have not been previously months with little benefit. In April 1980, cimetidine described in a patient taking metoclopramide. The was stopped and she was prescribed metoclo- drug was stopped and the serum prolactin level fell pramide (Maxolon) 10 mg three times daily incopyright. progressively to normal with resolution of symptoms addition to Gaviscon. At follow up in July 1980, over 4 months. This suggested that contrary to our she complained of galactorrhoea, loss of libido, original impression that she had a prolactin-secreting and headache for a month. Her optic fundi and pituitary adenoma which had been stimulated by visual fields were normal.
    [Show full text]
  • Papillary Adenoma of the Kidney with Mucinous Secretion
    Histol Histopathol (2001) 16: 387-392 001: 10.14670/HH-16.387 Histology and http://www_ehu_es/histol-histopathol Histopathology Cellular and Molecular Biology Papillary adenoma of the kidney with mucinous secretion J_F. Val-Bernal, J. Pinto, J.J. Gomez-Roman, M. Mayorga and F. Villoria Department of Anatomical Pathology, Marques de Valdecilia University Hospital, Medical Faculty, University of Cantabria, Santander, Spain Summary. Although infrequently, mucin secretion has justified. These criteria include: (a) papillary, tubular, or previously been reported in papillary renal cell tubulopapillary architecture; (b) diameter less than or carcinoma. We here investigate the presence of mucin in equal to 5 mm; and (c) lack of resemblance to clear cell, a series of 93 renal papillary adenomas in 58 patients. chromophobe, or collecting duct renal cell carcinomas Acid mucin was present in four cases (4.3% of the (Delahunt and Eble, 1997a,b; Grignon and Eble, 1998). tumors; 6.9% of the patients), in which basophilic mucin These aforementioned criteria were accepted at secretion was evident with hematoxylin-eosin. To the consensus conferences in Heidelberg (Kovacs et aI. , best of our knowledge mucin secretion has not been 1997) and Rochester (Starkel et al., 1997). reported in renal papillary adenoma. We describe two However, in the microscopic spectrum of renal different types of mucin secretion: intracytoplasmic and papillary adenoma (RPA) so far reported, mucin luminal. The secretion was intracellular in numerous production is not mentioned (Budin and McDonnell, scattered tumor cells in two cases, focal luminal in one 1984; Thoenes et aI., 1986; Delahunt and Eble, 1997a,b; case, and mixed intracellular and luminal in another Kovacs et aI., 1997; Starkel et aI., 1997; Grignon and case.
    [Show full text]
  • Adrenal Cortical Tumors, Pheochromocytomas and Paragangliomas
    Modern Pathology (2011) 24, S58–S65 S58 & 2011 USCAP, Inc. All rights reserved 0893-3952/11 $32.00 Adrenal cortical tumors, pheochromocytomas and paragangliomas Ricardo V Lloyd Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA Distinguishing adrenal cortical adenomas from carcinomas may be a difficult diagnostic problem. The criteria of Weiss are very useful because of their reliance on histologic features. From a practical perspective, the most useful criteria to separate adenomas from carcinomas include tumor size, presence of necrosis and mitotic activity including atypical mitoses. Adrenal cortical neoplasms in pediatric patients are more difficult to diagnose and to separate adenomas from carcinomas. The diagnosis of pediatric adrenal cortical carcinoma requires a higher tumor weight, larger tumor size and more mitoses compared with carcinomas in adults. Pheochromocytomas are chromaffin-derived tumors that develop in the adrenal gland. Paragangliomas are tumors arising from paraganglia that are distributed along the parasympathetic nerves and sympathetic chain. Positive staining for chromogranin and synaptophysin is present in the chief cells, whereas the sustentacular cells are positive for S100 protein. Hereditary conditions associated with pheochromocytomas include multiple endocrine neoplasia 2A and 2B, Von Hippel–Lindau disease and neurofibromatosis I. Hereditary paraganglioma syndromes with mutations of SDHB, SDHC and SDHD are associated with paragangliomas and some pheochromocytomas.
    [Show full text]
  • Multiple Endocrine Neoplasia Type 1 (MEN1)
    Page 1 of 2 Multiple Endocrine Neoplasia Type 1 (MEN1) MEN1 is an autosomal dominant syndrome caused by germline mutations in the MEN1 gene. Endocrine tumours come to attention because of the overproduction of hormones and/or tumour growth. A clinical MEN1 diagnosis requires the diagnosis of 2 endocrine tumours in the parathyroid, pituitary and/or gastro-entero-pancreatic (GEP) tract. MEN1 is also associated with a number of other endocrine (e.g. carcinoid, adrenocortical) and non-endocrine tumours (e.g. facial angiofibromas, collagenomas, lipomas, meningiomas, ependymomas, leiomyomas) in some families. MEN2 is a separate syndrome with medullary thyroid cancer and pheochromocytoma as key features. Referral Criteria Note: close relatives include: children, brothers, sisters, parents, aunts, uncles, grandchildren & grandparents on the same side of the family . History of cancer in cousins and more distant relatives from the same side of the family may also be relevant. • family member with a confirmed MEN1 g ene mutation – refer for carrier testing • a person with 2 or more of the 3 key MEN 1-associated tumours: o parathyroid tumour or hyperplasia (primary hyperparathyroidism) o pituitary adenoma (prolactinoma is the most common) o well-differentiated gastro-entero-pancreatic neuroendocrine tumour (e.g. gastrinoma, insulinoma, glucagonoma, pancreatic islet tumour, VIPoma) • a person with gastro-entero-pancreatic NET (neuroendocrine tumour) before age 40 • a person with parathyroid tumour or hyperplasia before age 40 • a person with primary hyperparathyroidism and a close relative with the same diagnosis • a person with features described above and close relative(s) with related tumours • a person with a close relative with features described above • a person with additional endocrine and non-endocrine features associated with MEN1 may be referred for assessment Referral of children is appropriate for this syndrome because it may inform their medical management.
    [Show full text]
  • Neoplasms of the Liver
    Modern Pathology (2007) 20, S49–S60 & 2007 USCAP, Inc All rights reserved 0893-3952/07 $30.00 www.modernpathology.org Neoplasms of the liver Zachary D Goodman Department of Hepatic and Gastrointestinal Pathology, Armed Forces Institute of Pathology, Washington, DC, USA Primary neoplasms of the liver are composed of cells that resemble the normal constituent cells of the liver. Hepatocellular carcinoma, in which the tumor cells resemble hepatocytes, is the most frequent primary liver tumor, and is highly associated with chronic viral hepatitis and cirrhosis of any cause. Benign tumors, such as hepatocellular adenoma in a noncirrhotic liver or a large, dysplastic nodule in a cirrhotic liver, must be distinguished from well-differentiated hepatocellular carcinoma. Cholangiocarcinoma, a primary adenocarci- noma that arises from a bile duct, is second in frequency. It is associated with inflammatory disorders and malformations of the ducts, but most cases are of unknown etiology. Cholangiocarcinoma resembles adenocarcinomas arising in other tissues, so a definitive diagnosis relies on the exclusion of an extrahepatic primary and distinction from benign biliary lesions. Modern Pathology (2007) 20, S49–S60. doi:10.1038/modpathol.3800682 Keywords: hepatocellular carcinoma; hepatocellular adenoma; dysplastic nodule; cholangiocarcinoma A basic principle of pathology is that a neoplasm more than 3 to 1 (Figure 1). Among primary liver usually differentiates in the manner of cells that are tumors that come to clinical attention, over three- normally present in the tissue in which the fourths are hepatocellular carcinoma (HCC), while neoplasm arises. Thus, primary neoplasms and the second most common primary malignancy, tumor-like lesions that occur in the liver usually cholangiocarcinoma (CC) accounts for 8% (Figure resemble the major constituent cells of the liver, 2).
    [Show full text]
  • Type of the Paper (Article
    Table S1: Systematic literature search strategy Medline via Ovid 200624 Search rerms Number Neuroendocrine tumors (neuroendocrine adj4 (tumo?r* or neoplas* or cancer* or carcinom* or 1. 22,028 malignanc*)).ab,kf,ti. neuroendocrine tumors/ or adenoma, acidophil/ or adenoma, basophil/ or adenoma, chromophobe/ or apudoma/ or carcinoid tumor/ or malignant carcinoid 2. syndrome/ or carcinoma, neuroendocrine/ or somatostatinoma/ or vipoma/ or 76,309 Multiple Endocrine Neoplasia Type 1/ or carcinoma, medullary/ or carcinoma, merkel cell/ or exp neurilemmoma/ or exp paraganglioma/ or pheochromocytoma/ ((carcinoma* adj2 medulla*) or (cancer adj2 medulla*) or (tumo?r* adj2 3. 8,903 medulla*)).ab,kf,ti. (carcinoid* or somatostatinoma* or vipoma* or apudoma* or (adenoma* adj2 chromophobe) or (adenoma* adj2 basophil*) or (adenoma* adj2 acidophil*) or 4. "Multiple Endocrine Neoplasia Type 1" or "MEN 1" or Neurilemmoma* or 61,149 Neurilemoma* or Schwannoma* or Neurinoma* or Schwannomatosis or Schwannomatoses or Paraganglioma* or Pheochromocytoma*).ab,kf,ti. 5. (merk* adj4 (tumo?r* or cancer or carcinom*)).ab,kf,ti. 3,411 ("Gastro-enteropancreatic neuroendocrine tumor" or "Thyroid cancer, medullary").mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism 6. 1,294 supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms] Obs! Fraserna söks i fält MP för att de finns som Supplementary Concept i MeSH 7. 1 or 2 or 3 or 4 or 5 or 6 107,828 Lutetium 8. Lutetium/ 902 9. (lutetium or edotreotide).mp. 2,052 (radiopeptide* or dotatoc or DOTATATE or PRRT or "peptide receptor 10.
    [Show full text]