Prevention and Management of Duodenal Polyps in Familial Adenomatous Polyposis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D
CLINICAL PRACTICE GUIDELINES The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D. • Karin Hardimann, M.D. • Martin Weiser, M.D. • Nancy Yu, M.D. Ian Paquette, M.D. • Daniel L. Feingold, M.D. • Scott R. Steele, M.D. Prepared by the Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons METHODOLOGY (ASCRS) is dedicated to ensuring high-quality pa- tient care by advancing the science, prevention, and These guidelines are built on the last set of the ASCRS T Practice Parameters for the Identification and Testing of management of disorders and diseases of the colon, rectum, Patients at Risk for Dominantly Inherited Colorectal Can- and anus. The Clinical Practice Guidelines Committee is 1 composed of society members who are chosen because they cer published in 2003. An organized search of MEDLINE have demonstrated expertise in the specialty of colon and (1946 to December week 1, 2016) was performed from rectal surgery. This committee was created to lead interna- 1946 through week 4 of September 2016 (Fig. 1). Subject tional efforts in defining quality care for conditions related headings for “adenomatous polyposis coli” (4203 results) to the colon, rectum, and anus, in addition to the devel- and “intestinal polyposis” (445 results) were included, us- opment of Clinical Practice Guidelines based on the best ing focused search. The results were combined (4629 re- available evidence. These guidelines are inclusive and not sults) and limited to English language (3981 results), then prescriptive. -
Guidelines for the Management of Patients with Pancreatic Cancer
v1 GUIDELINES Guidelines for the management of patients with pancreatic Gut: first published as 10.1136/gut.2004.057059 on 11 May 2005. Downloaded from cancer periampullary and ampullary carcinomas Pancreatic Section of the British Society of Gastroenterology, Pancreatic Society of Great Britain and Ireland, Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland, Royal College of Pathologists, Special Interest Group for Gastro-Intestinal Radiology ............................................................................................................................... Gut 2005;54(Suppl V):v1–v16. doi: 10.1136/gut.2004.057059 1.0 GUIDELINES—SUMMARY lymph node metastases. Variants of ductal DOCUMENT carcinomas and other malignant tumours of The following recommendations are introduced the pancreas are rare. by brief statements which summarise the evi- dence and discussion presented in the relevant section of the full text of the guidelines. Recommendations 1.1 Incidence, mortality rates, and N Proper recognition of variants of ductal aetiology carcinomas and other malignant tumours Pancreatic cancer is an important health problem of the pancreas require specialist pathol- for which no simple screening test is available. ogical expertise (grade C). The strongest aetiological association is with N The minimum data set proposed by the cigarette smoking, although at risk groups Royal College of Pathologists (see appen- include patients with chronic pancreatitis, adult dix for details) should be used for report- onset -
Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer. -
Familial Adenomatous Polyposis and MUTYH-Associated Polyposis
Corporate Medical Policy Familial Adenomatous Polyposis and MUTYH-Associated Polyposis AHS-M2024 File Name: familial_adenomatous_polyposis_and_mutyh_associated_polyposis Origination: 1/1/2019 Last CAP Review: 8/2021 Next CAP Review: 8/2022 Last Review: 8/2021 Description of Procedure or Service Familial adenomatous polyposis (FAP) is characterized by development of adenomatous polyps and an increased risk of colorectal cancer (CRC) caused by an autosomal dominant mutation in the APC (Adenomatous Polyposis Coli) gene (Kinzler & Vogelstein, 1996). Depending on the location of the mutation in the APC gene FAP can present as the more severe classic FAP (CFAP) with hundreds to thousands of polyps developing in the teenage years associated with a significantly increased risk of CRC, or attenuated FAP (AFAP) with fewer polyps, developing later in life and less risk of CRC (Brosens, Offerhaus, & Giardiello 2015; Spirio et al., 1993). Two other subtypes of FAP include Gardner syndrome, which causes non-cancer tumors of the skin, soft tissues, and bones, and Turcot syndrome, a rare inherited condition in which individuals have a higher risk of adenomatous polyps and colorectal cancer. In classic FAP, the most common type, patients usually develop cancer in one or more polyps as early as age 20, and almost all classic FAP patients have CRC by the age of 40 if their colon has not been removed (American_Cancer_Society, 2020). MUTYH-associated polyposis (MAP) results from an autosomal recessive mutation of both alleles of the MUTYH gene and is characterized by increased risk of CRC with development of adenomatous polyps. This condition, however, may present without these characteristic polyps (M. -
Duodenal Carcinoma from a Duodenal Diverticulum Mimicking Pancreatic Carcinoma
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Okayama University Scientific Achievement Repository Acta Med. Okayama, 2012 Vol. 66, No. 5, pp. 423ン427 CopyrightⒸ 2012 by Okayama University Medical School. Case Report http ://escholarship.lib.okayama-u.ac.jp/amo/ Duodenal Carcinoma from a Duodenal Diverticulum Mimicking Pancreatic Carcinoma Masashi Furukawaa*, Sadanobu Izumib, Kazunori Tsukudaa, Masaki Tokumoc, Jun Sakuraid, and Shohey Manoe aDepartment of Thoracic Surgery, Okayama University Hospital, Okayama 700-8558, Japan, Departments of bSurgery, dDiagnostic Radiology, ePathology, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan, and cDepartment of Surgery, National Hospital Organization Minami-Okayama Medical Center, Hayashima-cho, Okayama 701-0304, Japan An 81-year-old man was found to have a pancreatic head tumor on abdominal computed tomography (CT) performed during a follow-up visit for sigmoid colon cancer. The tumor had a diameter of 35mm on the CT scan and was diagnosed as pancreatic head carcinoma T3N0M0. The patient was treated with pylorus-preserving pancreaticoduodenectomy. Histopathological examination showed that the tumor had grown within a hollow structure, was contiguous with a duodenal diverticulum, and had partially invaded the pancreas. Immunohistochemistry results were as follows: CK7 negative, CK20 positive, CD10 negative, CDX2 positive, MUC1 negative, MUC2 positive, MUC5AC negative, and MUC6 negative. The tumor was diagnosed as duodenal carcinoma from the duodenal diverticu- lum. Preoperative imaging showed that the tumor was located in the head of the pancreas and was compressing the common bile duct, thus making it appear like pancreatic cancer. To the best of our knowledge, this is the second report of a case of duodenal carcinoma from a duodenal diverticulum mimicking pancreatic carcinoma. -
Multiple Endocrine Neoplasia Type 1 (MEN1)
Lab Management Guidelines v2.0.2019 Multiple Endocrine Neoplasia Type 1 (MEN1) MOL.TS.285.A v2.0.2019 Introduction Multiple Endocrine Neoplasia Type 1 (MEN1) is addressed by this guideline. Procedures addressed The inclusion of any procedure code in this table does not imply that the code is under management or requires prior authorization. Refer to the specific Health Plan's procedure code list for management requirements. Procedures addressed by this Procedure codes guideline MEN1 Known Familial Mutation Analysis 81403 MEN1 Deletion/Duplication Analysis 81404 MEN1 Full Gene Sequencing 81405 What is Multiple Endocrine Neoplasia Type 1 Definition Multiple Endocrine Neoplasia Type 1 (MEN1) is an inherited form of tumor predisposition characterized by multiple tumors of the endocrine system. Incidence or Prevalence MEN1 has a prevalence of 1/10,000 to 1/100,000 individuals.1 Symptoms The presenting symptom in 90% of individuals with MEN1 is primary hyperparathyroidism (PHPT). Parathyroid tumors cause overproduction of parathyroid hormone which leads to hypercalcemia. The average age of onset is 20-25 years. Parathyroid carcinomas are rare in individuals with MEN1.2,3,4 Pituitary tumors are seen in 30-40% of individuals and are the first clinical manifestation in 10% of familial cases and 25% of simplex cases. Tumors are typically solitary and there is no increased prevalence of pituitary carcinoma in individuals with MEN1.2,5 © eviCore healthcare. All Rights Reserved. 1 of 9 400 Buckwalter Place Boulevard, Bluffton, SC 29910 (800) 918-8924 www.eviCore.com Lab Management Guidelines v2.0.2019 Prolactinomas are the most commonly seen pituitary subtype and account for 60% of pituitary adenomas. -
Multiple Endocrine Neoplasia Type 2: an Overview Jessica Moline, MS1, and Charis Eng, MD, Phd1,2,3,4
GENETEST REVIEW Genetics in Medicine Multiple endocrine neoplasia type 2: An overview Jessica Moline, MS1, and Charis Eng, MD, PhD1,2,3,4 TABLE OF CONTENTS Clinical Description of MEN 2 .......................................................................755 Surveillance...................................................................................................760 Multiple endocrine neoplasia type 2A (OMIM# 171400) ....................756 Medullary thyroid carcinoma ................................................................760 Familial medullary thyroid carcinoma (OMIM# 155240).....................756 Pheochromocytoma ................................................................................760 Multiple endocrine neoplasia type 2B (OMIM# 162300) ....................756 Parathyroid adenoma or hyperplasia ...................................................761 Diagnosis and testing......................................................................................756 Hypoparathyroidism................................................................................761 Clinical diagnosis: MEN 2A........................................................................756 Agents/circumstances to avoid .................................................................761 Clinical diagnosis: FMTC ............................................................................756 Testing of relatives at risk...........................................................................761 Clinical diagnosis: MEN 2B ........................................................................756 -
Pituitary Adenomas: from Diagnosis to Therapeutics
biomedicines Review Pituitary Adenomas: From Diagnosis to Therapeutics Samridhi Banskota 1 and David C. Adamson 1,2,3,* 1 School of Medicine, Emory University, Atlanta, GA 30322, USA; [email protected] 2 Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA 3 Neurosurgery, Atlanta VA Healthcare System, Decatur, GA 30322, USA * Correspondence: [email protected] Abstract: Pituitary adenomas are tumors that arise in the anterior pituitary gland. They are the third most common cause of central nervous system (CNS) tumors among adults. Most adenomas are benign and exert their effect via excess hormone secretion or mass effect. Clinical presentation of pituitary adenoma varies based on their size and hormone secreted. Here, we review some of the most common types of pituitary adenomas, their clinical presentation, and current diagnostic and therapeutic strategies. Keywords: pituitary adenoma; prolactinoma; acromegaly; Cushing’s; transsphenoidal; CNS tumor 1. Introduction The pituitary gland is located at the base of the brain, coming off the inferior hy- pothalamus, and weighs no more than half a gram. The pituitary gland is often referred to as the “master gland” and is the most important endocrine gland in the body because it regulates vital hormone secretion [1]. These hormones are responsible for vital bodily Citation: Banskota, S.; Adamson, functions, such as growth, blood pressure, reproduction, and metabolism [2]. Anatomically, D.C. Pituitary Adenomas: From the pituitary gland is divided into three lobes: anterior, intermediate, and posterior. The Diagnosis to Therapeutics. anterior lobe is composed of several endocrine cells, such as lactotropes, somatotropes, and Biomedicines 2021, 9, 494. https: corticotropes, which synthesize and secrete specific hormones. -
Galactorrhoea, Hyperprolactinaemia, and Pituitary Adenoma Presenting During Metoclopramide Therapy B
Postgrad Med J: first published as 10.1136/pgmj.58.679.314 on 1 May 1982. Downloaded from Postgraduate Medical Journal (May 1982) 58, 314-315 Galactorrhoea, hyperprolactinaemia, and pituitary adenoma presenting during metoclopramide therapy B. T. COOPER* R. A. MOUNTFORD* M.D., M.R.C.P. M.D., M.R.C.P. C. MCKEEt B.Pharm, M.P.S. *Department ofMedicine, University of Bristol and tRegional Drug Information Centre Bristol Royal Infirmary, Bristol BS2 8HW Summary underwent hysterectomy for dysfunctional uterine A 49-year-old woman presented with a one month bleeding. There were no abnormal features on ex- history of headaches, loss of libido and galactorrhoea. amination. In May 1979, she was admitted for in- She had been taking metoclopramide for the previous vestigation but the only abnormality found was 3 months for reflux oesophagitis. She was found to reflux oesophagitis. She was treated with cimetidine have substantially elevated serum prolactin levels and and antacid (Gaviscon) over the subsequent 10 a pituitary adenoma, which have not been previously months with little benefit. In April 1980, cimetidine described in a patient taking metoclopramide. The was stopped and she was prescribed metoclo- drug was stopped and the serum prolactin level fell pramide (Maxolon) 10 mg three times daily incopyright. progressively to normal with resolution of symptoms addition to Gaviscon. At follow up in July 1980, over 4 months. This suggested that contrary to our she complained of galactorrhoea, loss of libido, original impression that she had a prolactin-secreting and headache for a month. Her optic fundi and pituitary adenoma which had been stimulated by visual fields were normal. -
The Characteristics and Outcomes of Small Bowel Adenocarcinoma: a Multicentre Retrospective Observational Study
FULL PAPER British Journal of Cancer (2017) 117, 1607–1613 | doi: 10.1038/bjc.2017.338 Keywords: small bowel; small intestine; adenocarcinoma The characteristics and outcomes of small bowel adenocarcinoma: a multicentre retrospective observational study Hiroyuki Sakae1, Hiromitsu Kanzaki*,1, Junichiro Nasu1,2, Yutaka Akimoto1, Kazuhiro Matsueda3, Masao Yoshioka2, Masahiro Nakagawa4, Shinichiro Hori5, Masafumi Inoue6, Tomoki Inaba7, Atsushi Imagawa8, Masahiro Takatani9, Ryuta Takenaka10, Seiyu Suzuki11, Toshiyoshi Fujiwara12 and Hiroyuki Okada1 1Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-Ku, Okayama 700-8558, Japan; 2Department of Internal Medicine, Okayama Saiseikai General Hospital, 2-25 Kokutai-cho, Kita-Ku, Okayama 700-8511, Japan; 3Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama 710-8602, Japan; 4Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-Ku, Hiroshima 730-8518, Japan; 5Department of Endoscopy, National Hospital Organization Shikoku Cancer Center, 160 Kou, Minamiumemoto-machi, Matsuyama, Ehime 791-0280, Japan; 6Department of Gastroenterology, Japanese Red Cross Okayama Hospital, 2-1-1 Aoe, Kita-Ku, Okayama 700-8607, Japan; 7Department of Gastroenterology, Kagawa Prefectural Central Hospital, 5-4-6 Ban-cho, Takamatsu, Kagawa 760-8557, Japan; 8Department of Gastroenterology, Mitoyo General Hospital, 708 Himehama, Kanonji, -
Papillary Adenoma of the Kidney with Mucinous Secretion
Histol Histopathol (2001) 16: 387-392 001: 10.14670/HH-16.387 Histology and http://www_ehu_es/histol-histopathol Histopathology Cellular and Molecular Biology Papillary adenoma of the kidney with mucinous secretion J_F. Val-Bernal, J. Pinto, J.J. Gomez-Roman, M. Mayorga and F. Villoria Department of Anatomical Pathology, Marques de Valdecilia University Hospital, Medical Faculty, University of Cantabria, Santander, Spain Summary. Although infrequently, mucin secretion has justified. These criteria include: (a) papillary, tubular, or previously been reported in papillary renal cell tubulopapillary architecture; (b) diameter less than or carcinoma. We here investigate the presence of mucin in equal to 5 mm; and (c) lack of resemblance to clear cell, a series of 93 renal papillary adenomas in 58 patients. chromophobe, or collecting duct renal cell carcinomas Acid mucin was present in four cases (4.3% of the (Delahunt and Eble, 1997a,b; Grignon and Eble, 1998). tumors; 6.9% of the patients), in which basophilic mucin These aforementioned criteria were accepted at secretion was evident with hematoxylin-eosin. To the consensus conferences in Heidelberg (Kovacs et aI. , best of our knowledge mucin secretion has not been 1997) and Rochester (Starkel et al., 1997). reported in renal papillary adenoma. We describe two However, in the microscopic spectrum of renal different types of mucin secretion: intracytoplasmic and papillary adenoma (RPA) so far reported, mucin luminal. The secretion was intracellular in numerous production is not mentioned (Budin and McDonnell, scattered tumor cells in two cases, focal luminal in one 1984; Thoenes et aI., 1986; Delahunt and Eble, 1997a,b; case, and mixed intracellular and luminal in another Kovacs et aI., 1997; Starkel et aI., 1997; Grignon and case. -
Cancer Surgeries in the Time of COVID-19: a Message from the SSO President and President-Elect
Cancer Surgeries in the Time of COVID-19: A Message from the SSO President and President-Elect March 23, 2020 Dear SSO Members, In these unprecedented times, we are forced to consider triage and rationing of cancer surgery cases. Here are a few of the reasons: • the potential shortage of supplies, such as masks, gowns, gloves • the potential shortage of hospital personnel due to sickness, quarantine and duties at home • the potential shortage of hospital beds, ICU beds and ventilators • the desire to maximize social distancing amongst our patients, colleagues and staff. We have asked each of the SSO Disease Site Work Group Chairs and Vice Chairs to provide their recommendations for managing care in their specialties, assuming a 3- to 6-month delay in care. We have summarized their recommendations below. Numerous organizations are publishing in-depth guidelines, such as the NCCN, ACS, and ASCO, and we will provide links to those documents on the SSO Website. We have also instituted a COVID-19 community discussion page in My SSO Community for members to share what is happening in their institutions. In the next few days, SSO will produce a series of podcasts featuring discussions with experts, regarding their opinions and institutional practices. These podcasts will be available on SSO’s Website, iTunes, Sticher and other podcast platforms. Please watch your email and SSO’s Twitter and Facebook pages for details. The Annals of Surgical Oncology will be publishing an editorial on this topic soon. As each institution across the world is experiencing this pandemic at different levels, the timing of rationing care will vary and must be decided locally.