Component-Based Robotic Engineering Part II: Systems and Models Davide Brugali, Member, IEEE and Azamat Shakhimardanov

Total Page:16

File Type:pdf, Size:1020Kb

Component-Based Robotic Engineering Part II: Systems and Models Davide Brugali, Member, IEEE and Azamat Shakhimardanov IEEE ROBOTICS AND AUTOMATION MAGAZINE, VOL. XX, NO. 1, MARCH 2010 1 Component-based Robotic Engineering Part II: Systems and Models Davide Brugali, Member, IEEE and Azamat Shakhimardanov Index Terms—Software Engineering, Reuse, Architectures. number of research projects facing the challenges of engineer- ing the software development process in robotics, for which a survey of their recent achievements would be a valuable I. INTRODUCTION contribution to the literature, the goal of this paper is to present This article is the second of a two-part series intended an overview of software design principles that enable the as an introduction to Component-based Software Engineering development of flexible and reusable robotic software systems. (CBSE) in Robotics. With this goal in mind, we present both a classification and In Part I, we regarded a component as a piece of software a possible architectural interpretation of well-known concepts that implements robotic functionality. The focus was on de- and recent advances in component-based software engineering. sign principles and implementation guidelines that enable the Where appropriate, we indicate the similarities between the development of reusable and maintainable software building architectural models presented in this paper and some of the blocks. models that have been documented in the literature. In Part II, we discuss the role of software components as architectural units of large, possibly distributed, software- II. CHALLENGES IN BUILDING ROBOTIC SOFTWARE intensive robotic systems. The focus is on technologies to COMPONENT SYSTEMS manage the heterogeneity of hardware, computational, and A number of issues make the design and development communication resources and on design techniques to assem- of robotic component-based systems difficult. Robotics is an ble components into systems. experimental science that can be analyzed from a double A Component-based System is a composition of compo- perspective. nents and the way components interact with other components On one hand, it is a discipline that has its roots in mechan- and with the computational environment greatly affects the ics, electronics, computer science and the cognitive sciences. flexibility of the entire system and the reusability of individual In this regard, software components embed functionality and functionality. control laws that bring together advanced research results built The paper is structured as follows. Section II discusses on quickly-changing technologies. the challenges that make the development of reusable com- On the other hand, Robotics is a research field that pursues ponents and flexible component systems difficult in robotics. ambitious goals, such as the study of intelligent behavior in In particular, we analyze the different sources of variability in artificial systems. These means that robots are used in ever new robotic technology and applications and the corresponding re- use cases and application scenarios with different functional quirements for flexibility in robotic software component-based requirements. Software components with similar functionality systems. The subsequent four sections introduce key concepts are integrated in more and more complex component-based related to the development of reusable software components, systems with increasing demanding performance and reliabil- such as threading, synchronization, resource awareness, dis- ity requirements. tribution, and quality of service negotiation and illustrate The intrinsic change-centric nature of robotic applications, architectural models that enable the independent evolution of poses the challenge of designing software components and different variability concerns of a component-based robotic systems that are flexible enough to accommodate frequently system. They are classified in four categories related to main changing functional and non-functional requirements. The concerns of component-based systems, namely Computation IEEE Standard Glossary of Software Engineering Terminology (Section III), Configuration (Section IV), Communication defines flexibility as the ”ease with which a system or compo- (Section V), and Coordination (Section VI). Finally, Section nent can be modified for use in applications or environments VII draws the relevant conclusions. other than those for which it was specifically designed”. It should be noted that this paper is not a survey of the The term environment refers to the complete range of ele- state-of-the-art in component-based software engineering, nor ments in an installation that interact with the component-based in robotics software development. While there is an increasing software system. This includes the computer and network D. Brugali is with the Department of Computer Science and Math- platform, the controlled robotic hardware, and the robotic ematics, Universita’ degli Studi di Bergamo, Dalmine, Italy e-mail: da- applications that integrate the reusable components. [email protected]. More specifically, flexibility is concerned with the portabil- A. Shakhimardanov is with the Department of XXX, Bonn-Rhein-Sieg University, Germany e-mail: [email protected] ity of the component system on different computational envi- Manuscript received xxx xx, 2009; revised xxx xx, 2009. ronments (e.g. from a centralized to a distributed system), the IEEE ROBOTICS AND AUTOMATION MAGAZINE, VOL. XX, NO. 1, MARCH 2010 2 interoperability among independently developed components processors (e.g. laptop or PC), often has severe constraints on (e.g. components interfacing heterogeneous robotic devices), computational resources, storage, and power, and is interfaced the reusability of individual components in different appli- to a multitude of highly heterogeneous sensors and actuators, cation contexts (e.g. a motion planner for static or dynamic such as laser range finders, stereo cameras, global position- environments), and the component system reconfigurability at ing systems (GPS), servo motors, grippers, wheeled rovers, runtime (e.g. adaptable robot behaviors). manipulator arms, and so on. The key to achieving software flexibility is the possibility With increasing computational power made available by to predict the class of changes that are likely to occur in the advances in microelectronic technology, computing infrastruc- environment over the lifespan of robotic software components tures of robotic systems have recently evolved from single and that affect components and systems portability, reusability, processor systems to networks of embedded systems [3], i.e. interoperability, and reconfigurability. systems assuming that the computing resources are embedded into some other device including hardware and mechanical A. Functional variability parts. Smart sensors and actuators integrating sensing, actuating, Sensing, planning, control, reasoning, and learning are processing, and networking elements into a single device sim- human-like capabilities that can be artificially replicated in plify system architecture, by decreasing wiring requirements a computer-based robotic system as software applications [1]. and improve modularity of the computing infrastructure by In complex robot control applications, several concurrent locally performing some signal processing tasks, but at the activities access the hardware devices (e.g. 3D perception for same time increase the complexity of software applications and obstacle avoidance and for map building), control complex make the development of reusable and portable components mechanisms (e.g. visual servoing for a mobile manipulator), extremely challenging. or coordinate a set of subsystems (e.g. coalition formation Several networking architectures can be used to interconnect for a team of robot). Each robot activity has its own timing such devices, including wired and wireless networks, or a requirements and the interaction between subsystems can be combination of both. Supporting reliable Real-Time (RT) either synchronous or asynchronous. Typically, low-level con- communication is one of the major requirements that are trol loops regulating the robot motion require the synchronous usually imposed to robot communication systems [4], where data flow model of computation, where control software real-time control data must be periodically transferred between periodically requests new measurements from sensors (e.g. sensors, controllers, and actuators according to strict transfer encoders) and sends motion commands to the actuators. In deadlines. contrast, the asynchronous event triggering model of computa- tion simplifies the implementation of higher-level control loops Despite the semantic similarities between the operations for monitoring the robot environment. supported by similar devices (e.g. all ranging provide distance Software implementations of common robot functionality measurements), the externally visible behavior of the software (e.g. motion planning, navigation, manipulation) may substan- that abstracts and interfaces to each device greatly depends tially differ for extra-functional properties, such as perfor- on device hardware architecture [5]. There are devices that mance, completeness, and resource demand. They are often have their analog and digital signals directly mapped to tied to specific robotic platforms, because the information memory registers on the central processor. For these devices, about the robot morphology, kinematics, and dynamics are all basic functionality (e.g. measurements filtering, image typically scattered throughout
Recommended publications
  • Towards Autonomous Multi-Robot Mobile Deposition for Construction
    YouWasps: Towards Autonomous Multi-Robot Mobile Deposition for Construction Julius Sustarevas1, Benjamin K. X. Tan1, David Gerber2, Robert Stuart-Smith1;3 and Vijay M. Pawar1;3 Abstract— Mobile multi-robot construction systems offer new ways to optimise the on-site construction process. In this paper we begin to investigate the functionality requirements for controlling a team of robots to build structures much greater than their individual workspace. To achieve these aims, we present a mobile extruder robot called YouWasp. We also begin to explore methods for collision aware printing and construction task decomposition and allocation. These are deployed via YouWasp and enable it to deposit material autonomously. In doing so, we are able to evaluate the potential for parallelization of tasks and printing autonomy in simulation as well as physical team of robots. Altogether, these results provide a foundation for future work that enable fleets of mobile construction systems to cooperate and help us shape our built environment in new ways. Fig. 1: Visualisation of YouWasp team of robots deployed in a construction scenario. I. INTRODUCTION The US$8.8 trillion global market value[1] of the con- manufacturing companies such as Apis Cor in Russia, Win- struction sector, shows the unmatched effort that construc- sun Decoration Engineering Company in China, NASA’s tion, as a human endevour, receives. In fact, construction 3D printing in Zero-G and US Armed Forces on-site 3D is often seen as the sector at the forefront of tackling printed barracks. Within this context, typical examples use global challenges like population growth, urbanisation and either gantry-type solutions or industrial robots with 3-to- sustainability[2].
    [Show full text]
  • 8. Robotic Systems Architectures and Programming
    187 8. RoboticRobotic Systems Architectures and Programming Syste David Kortenkamp, Reid Simmons 8.1 Overview.............................................. 187 Robot software systems tend to be complex. This 8.1.1 Special Needs complexity is due, in large part, to the need to con- of Robot Architectures .................. 188 trol diverse sensors and actuators in real time, in 8.1.2 Modularity and Hierarchy.............. 188 the face of significant uncertainty and noise. Robot 8.1.3 Software Development Tools.......... 188 systems must work to achieve tasks while moni- toring for, and reacting to, unexpected situations. 8.2 History ................................................ 189 Doing all this concurrently and asynchronously 8.2.1 Subsumption ............................... 189 adds immensely to system complexity. 8.2.2 Layered Robot Control Architectures 190 The use of a well-conceived architecture, 8.3 Architectural Components ..................... 193 together with programming tools that support 8.3.1 Connecting Components................ 193 the architecture, can often help to manage that 8.3.2 Behavioral Control........................ 195 complexity. Currently, there is no single archi- 8.3.3 Executive .................................... 196 tecture that is best for all applications – different 8.3.4 Planning ..................................... 199 architectures have different advantages and dis- 8.4 Case Study – GRACE ............................... 200 advantages. It is important to understand those strengths and weaknesses when choosing an 8.5 The Art of Robot Architectures ............... 202 architectural approach for a given application. 8.6 Conclusions and Further Reading ........... 203 This chapter presents various approaches to architecting robotic systems. It starts by defining References .................................................. 204 terms and setting the context, including a recount- ing of the historical developments in the area of robot architectures.
    [Show full text]
  • National Robotics Initiative (NRI)(Nsf11553)
    This document has been archived and replaced by NSF 12-607. National Robotics Initiative (NRI) The realization of co-robots acting in direct support of individuals and groups PROGRAM SOLICITATION NSF 11-553 National Science Foundation Directorate for Computer & Information Science & Engineering Division of Information & Intelligent Systems Directorate for Social, Behavioral & Economic Sciences Directorate for Engineering Directorate for Education & Human Resources National Institutes of Health National Institute of Neurological Disorders and Stroke National Institute on Aging National Institute of Biomedical Imaging and Bioengineering National Center for Research Resources Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institute of Nursing Research U.S. Dept. of Agriculture National Institute of Food and Agriculture National Aeronautics and Space Administration Directorate for Education and Human Resources, Game Changing Technology Division Letter of Intent Due Date(s) (required) (due by 5 p.m. proposer's local time): October 01, 2011 October 1, Annually Thereafter Small Proposals December 15, 2011 December 15, Annually Thereafter Group Large Proposals Full Proposal Deadline(s) (due by 5 p.m. proposer's local time): November 03, 2011 November 3, Annually Thereafter Small Proposals January 18, 2012 January 18, Annually Thereafter Group Large Proposals IMPORTANT INFORMATION AND REVISION NOTES Public Briefings: One or more collaborative webinar briefings with question and answer functionality will
    [Show full text]
  • Multiprocess Communication and Control Software for Humanoid Robots Neil T
    IEEE Robotics and Automation Magazine Multiprocess Communication and Control Software for Humanoid Robots Neil T. Dantam∗ Daniel M. Lofaroy Ayonga Hereidx Paul Y. Ohz Aaron D. Amesx Mike Stilman∗ I. Introduction orrect real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for Clocomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multi-process software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operating. This approach also assists with modularity and concurrency. For real-time tasks such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general purpose and real-time needs [19], [17], [13], [9], [15]. Typical methods focus on reliable communication or network-transparency and accept a trade-off of increased mes- sage latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new Interprocess Communication (IPC) library, Ach,1 which addresses this need, and discuss its application for real-time, multiprocess control on three humanoid robots (Fig. 1). There are several design decisions that influenced this robot software and motivated development of the Ach library. First, to utilize decades of prior development and engineering, we implement our real-time system on top of a POSIX-like Operating System (OS)2.
    [Show full text]
  • Applying Machine Learning to Robotics WHITEPAPER
    WHITEPAPER Credit: Pixabay Applying Machine Learning to Robotics TABLE OF CONTENTS MACHINE LEARNING - TOP MARKS FOR POTENTIAL MACHINE LEARNING SOLVES BUSINESS PROBLEMS CURRENT TECHNOLOGIES AND SUPPLIERS MACHINE LEARNING IN ROBOTICS: EXAMPLE 1 MACHINE LEARNING IN ROBOTICS: EXAMPLE 2 MACHINE LEARNING IN ROBOTICS: EXAMPLE 3 NEXT-GENERATION INDUSTRY WILL RELY ON MACHINE LEARNING roboticsbusinessreview.com 2 APPLYING MACHINE LEARNING TO ROBOTICS Advances in artificial intelligence are making robots smarter at pick-and- place operations, drones more autonomous, and the Industrial Internet of Things more connected. Where else could machine learning help? By Andrew Williams A growing number of businesses worldwide are waking up to the potentially transformative capabilities of machine learning - particularly when applied to robotics systems in the workplace. In recent years, the capacity of machine learning to improve efficiency in fields as diverse as manufacturing assembly, pick-and-place operations, quality control and drone systems has also gathered a great deal of momentum. Knowing that machine learning is improving also heightens awareness of great strides being made in artificial intelligence (AI), to the extent that the two technologies are often viewed interchangeably. Major recent advances in topics such as logic and data analytics, algorithm development, and predictive analytics are also driving AI’s growth. In this report, we’ll review the latest cutting-edge machine learning research and development around the globe, and explore some emerging applications in the field of robotics. MACHINE LEARNING - TOP MARKS FOR POTENTIAL A September 2017 report by Research and Markets predicts the global machine learning market will grow from $1.4 billion in 2017 to $8.81 billion by 2022, with a compound annual growth rate of 44.1%.
    [Show full text]
  • ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation
    sustainability Article ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation Yi-Zeng Hsieh 1,2,3 , Shih-Syun Lin 4,* , Yu-Cin Luo 1, Yu-Lin Jeng 5 , Shih-Wei Tan 1,*, Chao-Rong Chen 6 and Pei-Ying Chiang 7 1 Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan; [email protected] (Y.-Z.H.); [email protected] (Y.-C.L.) 2 Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung City 202, Taiwan 3 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 4 Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 202, Taiwan 5 Department of Information Management, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan; [email protected] 6 Department of Electrical Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] 7 Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106, Taiwan; [email protected] * Correspondence: [email protected] (S.-S.L.); [email protected] (S.-W.T.) Received: 3 March 2020; Accepted: 17 June 2020; Published: 12 July 2020 Abstract: Under the vigorous development of global anticipatory computing in recent years, there have been numerous applications of artificial intelligence (AI) in people’s daily lives. Learning analytics of big data can assist students, teachers, and school administrators to gain new knowledge and estimate learning information; in turn, the enhanced education contributes to the rapid development of science and technology.
    [Show full text]
  • Design of a Canine Inspired Quadruped Robot As a Platform for Synthetic Neural Network Control
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 7-15-2019 Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control Cody Warren Scharzenberger Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Mechanical Engineering Commons, and the Robotics Commons Let us know how access to this document benefits ou.y Recommended Citation Scharzenberger, Cody Warren, "Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control" (2019). Dissertations and Theses. Paper 5135. https://doi.org/10.15760/etd.7014 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Design of a Canine Inspired Quadruped Robot as a Platform for Synthetic Neural Network Control by Cody Warren Scharzenberger A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Thesis Committee: Alexander Hunt, Chair David Turcic Sung Yi Portland State University 2019 Abstract Legged locomotion is a feat ubiquitous throughout the animal kingdom, but modern robots still fall far short of similar achievements. This paper presents the design of a canine-inspired quadruped robot named DoggyDeux as a platform for synthetic neural network (SNN) research that may be one avenue for robots to attain animal-like agility and adaptability. DoggyDeux features a fully 3D printed frame, 24 braided pneumatic actuators (BPAs) that drive four 3-DOF limbs in antagonistic extensor-flexor pairs, and an electrical system that allows it to respond to commands from a SNN comprised of central pattern generators (CPGs).
    [Show full text]
  • CPS Platform Approach to Industrial Robots
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Association for Information Systems AIS Electronic Library (AISeL) Pacific Asia Conference on Information Systems PACIS 2015 Proceedings (PACIS) 2015 CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions Martin Mikusz University of Stuttgart, [email protected] Akos Csiszar University of Stuttgart, [email protected] Follow this and additional works at: http://aisel.aisnet.org/pacis2015 Recommended Citation Mikusz, Martin and Csiszar, Akos, "CPS Platform Approach to Industrial Robots: State of the Practice, Potentials, Future Research Directions" (2015). PACIS 2015 Proceedings. 176. http://aisel.aisnet.org/pacis2015/176 This material is brought to you by the Pacific Asia Conference on Information Systems (PACIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in PACIS 2015 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. CPS PLATFORM APPROACH TO INDUSTRIAL ROBOTS: STATE OF THE PRACTICE, POTENTIALS, FUTURE RESEARCH DIRECTIONS Martin Mikusz, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Akos Csiszar, Graduate School of Excellence for advanced Manufacturing Engineering, GSaME, University of Stuttgart, Germany, [email protected] Abstract Approaches, such as Cloud Robotics, Robot-as-a-Service, merged Internet of Things and robotics, and Cyber-Physical Systems (CPS) in production, show that the industrial robotics domain experiences a paradigm shift that increasingly links robots in real-life factories with virtual reality.
    [Show full text]
  • ELEMENTS of ROBOTICS Mordechai Ben-Ari Francesco Mondada Elements of Robotics Elements of Robotics Mordechai Ben-Ari • Francesco Mondada
    MORDECHAI BEN-ARI, FRANCESCO MONDADA ELEMENTS OF ROBOTICS Mordechai Ben-Ari Francesco Mondada Elements of Robotics Elements of Robotics Mordechai Ben-Ari • Francesco Mondada Elements of Robotics Mordechai Ben-Ari Francesco Mondada Department of Science Teaching Laboratoire de Systèmes Robotiques Weizmann Institute of Science Ecole Polytechnique Fédérale de Lausanne Rehovot Lausanne Israel Switzerland ISBN 978-3-319-62532-4 ISBN 978-3-319-62533-1 (eBook) https://doi.org/10.1007/978-3-319-62533-1 Library of Congress Control Number: 2017950255 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap- tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Artificial Intelligence in 2027
    AI MATTERS, VOLUME 4, ISSUE 1 4(1) 2018 Artificial Intelligence in 2027 Maria Gini (University of Minnesota; [email protected]) Noa Agmon (Bar-Ilan University; [email protected]) Fausto Giunchiglia (University of Trento; [email protected]) Sven Koenig (University of Southern California; [email protected]) Kevin Leyton-Brown (University of British Columbia; [email protected]) DOI: 10.1145/3203247.3203251 Introduction Noa Agmon, Bar-Ilan University1 Every day we read in the scientific and popu- The discussion about the fourth industrial rev- lar press about advances in AI and how AI is olution, and the part of AI and robotics within changing our lives. Things are moving at a fast it, is wide. In the context of this revolution, au- pace, with no obvious end in sight. tonomous cars and other types of robots are expected to gain popularity and, among other What will AI be ten years from now? A tech- things, to take over human labor. While surveys nology so pervasive in our daily lives that we like “When will AI exceed human performance?” will no longer think about it? A dream that has (GSD+17) report that some researchers ex- failed to materialize? A mix of successes and pect robots to be capable of performing human failures still far from achieving its promises? tasks, such as running five kilometers, within At the 2017 International Joint Conference on ten years, this will probably take much longer Artificial Intelligence (IJCAI), Maria Gini chaired given the current state of robotic development. a panel to discuss “AI in 2027.” There were Today, the use of robots is generally limited to four panelists: Noa Agmon (Bar-Ilan Univer- three categories: non-critical tasks; settings sity, Israel), Fausto Giunchiglia (University of in which robots are semi-autonomous, tele- Trento, Italy), Sven Koenig (University of South- operated, or remote-controlled (namely, not ern California, US), and Kevin Leyton-Brown fully autonomous); and highly structured set- (University of British Columbia, Canada).
    [Show full text]
  • (ROS) Based Humanoid Robot Control Ganesh Kumar Kalyani
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Middlesex University Research Repository A Robot Operating System (ROS) Based Humanoid Robot Control Ganesh Kumar Kalyani A Thesis submitted to Middlesex University in fulfillment of the requirements for degree of MASTER OF SCIENCE Department of Design Engineering & Mathematics Middlesex University, London Supervisors Dr. Vaibhav Gandhi Dr. Zhijun Yang November 2016 Tables of Contents Table of Contents…………………………………………………………………………………….II List of Figures…………………………………………………………………………………….….IV List of Tables………………………………………………………………………………….……...V Acknowledgement…………………………………………………………………………………...VI Abstract……………………………………………………………………………………………..VII List of Acronyms and Abbreviations……………………………………………………………..VIII 1. Introduction .................................................................................................................................. 1 1.1 Introduction ............................................................................................................................ 1 1.2 Rationale ................................................................................................................................. 6 1.3 Aim and Objective ................................................................................................................... 7 1.4 Outline of the Thesis ............................................................................................................... 8 2. Literature Review .....................................................................................................................
    [Show full text]
  • Robotic Process Automation
    Robotic Process Automation by Peter Hofmann1, Caroline Samp2, Nils Urbach3 First Online: 4. November 2019 in: Electronic Markets (2019). https://doi.org/10.1007/s12525-019-00365-8 1 [email protected] 2 [email protected] 3 [email protected] University of Augsburg, D-86135 Augsburg Visitors: Universitätsstr. 12, 86159 Augsburg Phone: +49 821 598-4801 (Fax: -4899) 1022 University of Bayreuth, D-95440 Bayreuth - Visitors: Wittelsbacherring 10, 95444 Bayreuth WI Phone: +49 921 55-4710 (Fax: -844710) www.fim-rc.de Robotic Process Automation Full Title of Article: Robotic Process Automation Subtitle (optional): Preferred Abbreviated Title for Running Robotic Process Automation Head (maximum of 65 characters including spaces) Key Words (for indexing and abstract Robotic Process Automation, Business Process Automation, services – up to 6 words): Software Robots, IS Ecosystems, Back-Office, RPA JEL classification M15 (IT Management) Word Count 5461 <Highlight and Press F9 to update> Word Processing Program Name and Microsoft Windows 2016 Version Number: Abstract: Within digital transformation, which is continuously progressing, robotic process automation (RPA) is drawing much corporate attention. While RPA is a popular topic in the corporate world, the academic research lacks a theoretical and synoptic analysis of RPA. Conducting a literature review and tool analysis, we propose – in a holistic and structured way – four traits that characterize RPA, providing orientation as well as a focus for further research. Software robots automate processes originally performed by human work. Thus, software robots follow a choreography of technological modules and control flow operators while operating within IT ecosystems and using established applications.
    [Show full text]