BULLETIN of the MINERAL RESEARCH and EXPLORATION Bulletin of the Foreign Edition 2015 151 ISSN : 0026 - 4563 CONTENTS

Total Page:16

File Type:pdf, Size:1020Kb

BULLETIN of the MINERAL RESEARCH and EXPLORATION Bulletin of the Foreign Edition 2015 151 ISSN : 0026 - 4563 CONTENTS Bull. Min. Res. Exp. (2015) 151: 169-215 BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION Bulletin of the Foreign Edition 2015 151 ISSN : 0026 - 4563 CONTENTS The late Quaternary Tectono-Stratigraphic evolution of the Lake Van, Turkey ..................................................................... Naci GÖRÜR, M. Nam›k ÇA⁄ATAY, Cengiz ZABCI, Mehmet SAKINÇ, ................................................................................................................Remzi AKKÖK, Hande fi‹LE and Sefer ÖRÇEN 1 Late Cenozoic Extensional Tectonics In Western Anatolia: Exhumation Of The Menderes Core Complex And Formation Of Related Basins ................................................................................................................................. Gürol SEYITO⁄LU and Veysel IfiIK 49 Late Pleistocene Glaciations and Paleoclimate of Turkey ............................................................................................................................. M. Akif SARIKAYA and Attila ÇINER 109 Late Permian Unconformity Around Ankara and New Age Data on The Basement Rocks, Ankara, Turkey .................................................. Mustafa SEV‹N, Mustafa DÖNMEZ, Gökhan ATICI, A. Hande ESATO⁄LU VEKL‹, ...................................................................................... Ender SARIFAKIO⁄LU, Serap ARIKAN and Havva SOYCAN 131 Mineral Research and Exploration Differentiation Processes In Late Cretaceous Ultrapotassic Volcanics Around Amasya .................................................................................................................................... Fatma GÜLMEZ and fi. Can GENÇ 151 Geological Features Of Neogene Basins Hosting Borate Deposits: An Overview Of Deposits and Future Forecast, Turkey .................................................................................................................................................................. Cahit HELVACI 171 Vertical And Horizontal Analysis Of Crustal Structure In Eastern Anatolia Region ................... Oya PAMUKÇU, Tolga GÖNENÇ, Ayça YURDAKUL ÇIRMIK, fievket DEM‹RBAfi and Seyit TOSUN 210 Archaeological and Geological Concepts on the Topic of Ancient Mining ....................................................................................................................... Prentiss DE JESUS and Gonca DARDEN‹Z 233 Evaluation Of Asbestos Exposure In Dumanli Village (Çanakkale-Turkey) From A Medical Geology Viewpoint: An Inter-Disciplinary Study ................................................................................................... Erdinç Y‹⁄‹TBAfi, Arzu M‹R‹C‹, U¤ur GÖNLÜGÜR, ............................................................................ Coflkun BAKAR, Onur TUNÇ, F›rat fiENGÜN and Özgür IfiIKO⁄LU 249 Geological Heritage And Framework List Of The Geosites In Turkey ..................................................................................... Nizamettin KAZANCI, Fuat fiARO⁄LU and Yaflar SULUDERE 261 Review of The Occurrence of Two New Minerals in The Emet Borate Deposit, Turkey: Emetite, Ca7Na3K(SO4)9 and Fontarnauite Na2Sr(SO5)[B5O8(OH)](H2O)2 http://dergi.bulletin.gov.tr .................................................................................................................................................................. Cahit HELVACI 271 Acknowledgement ................................................................................................................................................................ 287 Notes to the authors............................................................................................................................................................... 289 GEOLOGICAL FEATURES OF NEOGENE BASINS HOSTING BORATE DEPOSITS: AN OVERVIEW OF DEPOSITS AND FUTURE FORECAST, TURKEY Cahit HELVACIa* a Dokuz Eylül Üniversitesi, Jeoloji Mühendisli¤i Bölümü T›naztepe Yerleflkesi, 35160 Buca/‹zmir TURKEY ABSTRACT Keywords: The geometry, stratigraphy, tectonics and volcanic components of the borate bearing Neogene Neogene borate basins, basins in western Anatolia offer some important insights into on the relationship between basin ‹zmir-Bal›kesir Transfer evolution, borate formation and mode of extension in western Anatolia. Some of the borate Zon, Menderes deposits in NE-SW trending basins developed along the ‹zmir-Bal›kesir Transfer Zone (‹BTZ) Metamorphic Complex, (e.g. Bigadiç, Sultançay›r and Kestelek basins), and other deposits in the NE-SW trending basins Borate Deposits, Overview of Deposits, which occur on the northern side of the Menderes Core Complex (MCC) are the Selendi and Future Forecast, West Emet basins. The K›rka borate deposit occurs further to the east and is located in a completely Anatolia. different geological setting and volcanostratigraphic succession. Boron is widely distributed; including in soil and water, plants and animals. The element boron does not exist freely by itself in nature, but rather it occurs in combination with oxygen and other elements in salts, commonly known as borates. Approximately 280 boron-bearing minerals have been identified, the most common being sodium, calcium and magnesium salts. Four main continental metallogenic borate provinces are recognized at a global scale. They are located in Anatolia (Turkey), California (USA), Central Andes (South America) and Tibet (Central Asia). The origin of borate deposits is related to Cenozoic volcanism, thermal spring activity, closed basins and arid climate. Borax is the major commercial source of boron, with major supplies coming from Turkey, USA and Argentina. Colemanite is the main calcium borate and large scale production is restricted to Turkey. Datolite and szaibelyite are confined to Russia and Chinese sources. Four Main borax (tincal) deposits are present in Anatolia (K›rka), California (Boron), and two in the Andes (Tincalayu and Loma Blanca). K›rka, Boron and Loma Blanca have similarities with regard to their chemical and mineralogical composition of the borate minerals. Colemanite deposits with/without probertite and hydroboracite are present in west Anatolia, Death Valley, California, and Sijes (Argentina). Quaternary borates are present in salars (Andes) and playa- lakes and salt pans (USA-Tibet). Boron is a rare element in the Earth’s crust, but extraordinary concentrations can be found in limited places. The formation of borate deposits can be classified as follows: a skarn group associated with intrusives and consisting of silicates and iron oxides; a magnesium oxide group hosted by marine evaporitic sediments; and a sodium– and calcium–borate hydrates group associated with playa-lake sediments and explosive volcanic activity. Some conditions are essential for the formation of economically viable borate deposits in playa-lake volcano-sedimentary sequences: formation of playa-lake environment; concentration of boron in the playa lake, sourced from andesitic to rhyolitic volcanics, direct ash fall into the basin, or hydrothermal solutions along graben faults; thermal springs near the area of volcanism; arid to semi-arid climatic conditions; and lake water with a pH of between 8.5 and 11. A borate is defined as any compound that contains or supplies boric oxide (B2O3). A large number of minerals contain boric oxide, but the three that are most important from a worldwide commercial standpoint are borax, ulexite, and colemanite, which are produced in a limited number of countries. Turkey has the largest borax, ulexite and colemanite reserves in the world and all the world’s countries are dependent upon the colemanite and ulexite reserves of Turkey. * Corresponding author: Cahit Helvac›, [email protected] 169 Neogene Basins Hosting Borate Deposits Most of the world’s commercial borate deposits are mined by open pit methods. Brines from Searles Lake, and presumably the Chinese sources, are recovered by either controlled evaporation or carbonation. Boric acid is one of the final products produced from most of the processes. Further research on the mineralogy and chemistry of borate minerals and associated minerals will the production and utilization of borate end-products. Many modern industries need industrial borate minerals, and many people use their products. In addition, boron is essential to plant life, and by extension, all life so it’s hard to imagine our world without using it. Therefore, borates and their products are critical to the Sustainable Development of the world. 1. Introduction mining, and processing of borates are fascinating, because their remote locations often led to unusual Borate history is very ancient: derived from the difficulties, and hardships in recovering the desired Persian burah (boorak), borax was already known to products. This varied from workers wading into the Babylonians who brought it from the Himalayas Himalayan lakes to harvest the “floor” and then some four thousand years ago for use in the transport the borax in saddlebags on sheep across the manufacture of rings, amulets, and bracelets. The Himalayas to the markets, to the “Dante’s Inferno” of Egyptians used borax in mummifying, and around the Larderello boric acid fumaroles, to the colourful 300 AD the Chinese were familiar with borax glazes, 20-mule teams of the western United States (Kistler as were the Arabs three centuries later. Borax was and Helvac›, 1994; Helvac›, 2005). first brought to Europe in the 13th century, presumably by Marco Polo, and since that time by The early history of borate mining in Turkey goes traders from
Recommended publications
  • Fall 2016 Gems & Gemology
    FALL 2016 VOLUME LII THE UARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA Review of CVD Synthetic Diamonds Reversible Color Alteration of Blue Zircon Sapphires from the Russian Far East Grandidierite from Madagascar Editorial Staff Editor-in-Chief Editors, Lab Notes Contributing Editors Duncan Pay Thomas M. Moses James E. Shigley gia.edu/gems-gemology [email protected] Shane F. McClure Andy Lucas Donna Beaton Subscriptions Managing Editor Editors, Micro-World Copies of the current issue may be purchased for Stuart D. Overlin Nathan Renfro Editor-in-Chief Emeritus $29.95 plus shipping. Subscriptions are $79.99 for one [email protected] Elise A. Skalwold Alice S. Keller year (4 issues) in the U.S. and $99.99 elsewhere. Cana- John I. Koivula dian subscribers should add GST. Discounts are avail- Editor Customer Service able for group subscriptions, GIA alumni, and current Jennifer-Lynn Archuleta Editors, Gem News Martha Erickson GIA students. To purchase print subscriptions, visit [email protected] (760) 603-4502 store.gia.edu or contact Customer Service. For insti- Emmanuel Fritsch tutional rates, contact Customer Service. [email protected] Technical Editors Gagan Choudhary Tao Z. Hsu Christopher M. Breeding Database Coverage Gems & Gemology’s impact factor is 0.394, accord- [email protected] Editorial Assistants ing to the 2015 Thomson Reuters Journal Citation Jennifer Stone-Sundberg Brooke Goedert Reports (issued July 2016). G&G is abstracted in Erin Hogarth Thomson Reuters products (Current Contents: Phys- ical, Chemical & Earth
    [Show full text]
  • Ultrahigh-Field Mg NMR and DFT Study of Magnesium Borate Minerals
    Ultrahigh-Field 25Mg NMR and DFT Study of Magnesium Borate Minerals 1 2† 3 4 5 Bing Zhou, § Alexandra Faucher, § Robert Laskowski, Victor V. Terskikh, Scott Kroeker, Wei Sun,6,7 Jinru Lin,6 Jin-Xiao Mi,7 Vladimir K. Michaelis2* and Yuanming Pan6* 1. College of Materials Science and Engineering, Tongji University, Shanghai 21000, China 2. Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada 3. Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16, Connexis, Singapore 138632 4. Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 Canada 5. Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 6. Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada 7. Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, China †Current address: Bernal Institute, University of Limerick, Limerick, Republic of Ireland §BZ and AF contributed equally *Corresponding authors: Vladimir K. Michaelis ([email protected]) and Yuanming Pan ([email protected]) Keywords: MAS NMR, grandidierite, quantum chemical calculations, WURST, CPMG, wideline, NMR crystallography 1 ABSTRACT A series of well-characterized magnesium borate minerals and synthetic analogues have been studied via ultrahigh-field 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy. Correlations between 25Mg NMR parameters and the local structure at the magnesium site(s) are highlighted and discussed. First-principles density functional theory calculations of 25Mg NMR parameters carried out with the WIEN2k software package support our experimental 25Mg NMR 25 data. Experimental Mg CQ values range from 0.7 ± 0.1 MHz in hungchaoite to 18.0 ± 0.5 MHz in 25 boracite-type Mg3B7O13Br.
    [Show full text]
  • Strontium Borate) Mineral
    STUDIES ON TUNELLITE (STRONTIUM BORATE) MINERAL Hüseyin GÜLENSOY and T. TEBERDAR İstanbul University, Faculty of Chemistry SUMMARY. — In these studies, the physical, chemical and mineralogical properties of the tunellite found associated with the boron mines in Turkey, which have long been known, have been investigated and the chemical compositon determined. The thermal decomposition of tunellite mineral has been studied both by dynamic and static methods. The results obtained with the methods above were checked with those obtained by Röntgenographic analysis and with the DTA studies. As a result of these studies, it has been observed that the tunellite mineral was transformed into veatchite mineral, after losing 4 molecules of its crystal water. INTRODUCTION AND HISTORY Boron minerals which are gaining ever-increasing importance in the world industry occur widespread in the northwest part of Turkey. Boron occurrences of the country are generally located in the vicinity of Bigadiç, Balıkesir, Mustafakemalpaşa, Emet and Eskişehir. Borate ores encountered in these mines are generally, ulexite and colemanite. The reserves and the grade of the ore are con- sidered favorable for economic production. Associated with the colemanite and ulexite produced from these mines, some other boron minerals are also found and the most important of these are inyoite, meyerhofferite, tertschite and howlite. These secondary minerals are locally found interbedded in the clay seams, as thin beds or nodules. In some mines, a new mineral, showing the composition of strontium borate, is found in association with colemanite and ulexite; this new mineral, which sometimes shows a prismatic struc- ture, is also found to occur closely mixed with clay having bentonite texture.
    [Show full text]
  • Trace Elements and Minerals in Fumarolic Sulfur: the Case of Ebeko Volcano, Kuriles
    Hindawi Geofluids Volume 2018, Article ID 4586363, 16 pages https://doi.org/10.1155/2018/4586363 Research Article Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles E. P. Shevko,1 S. B. Bortnikova,2 N. A. Abrosimova,2 V. S. Kamenetsky ,3,4 S. P. Bortnikova,2 G. L. Panin,2 and M. Zelenski 3 1 Sobolev Institute of Geology and Mineralogy, SBRAS, Novosibirsk 630090, Russia 2Trofmuk Institute of Petroleum Geology and Geophysics, SBRAS, No. 3, Novosibirsk 630090, Russia 3Institute of Experimental Mineralogy RAS, Chernogolovka 142432, Russia 4EarthSciencesandCODES,UniversityofTasmania,PrivateBag79,Hobart,TAS7001,Australia Correspondence should be addressed to M. Zelenski; [email protected] Received 25 June 2017; Revised 13 October 2017; Accepted 14 December 2017; Published 20 March 2018 Academic Editor: Joerg Goettlicher Copyright © 2018 E. P. Shevko et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Native sulfur deposits on fumarolic felds at Ebeko volcano (Northern Kuriles, Russia) are enriched in chalcophile elements (As- Sb-Se-Te-Hg-Cu) and contain rare heavy metal sulfdes (Ag2S, HgS, and CuS), native metal alloys (Au2Pd), and some other low- solubility minerals (CaWO4, BaSO4). Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite) as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. Te comparison of elemental abundances in sulfur and unaltered rocks (andesite) demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti) and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te), halogens (Br and I), and Hg are likely transported as volatile species, even ∘ at temperatures slightly above 100 C.
    [Show full text]
  • Potash, Soda, and Borate Mineral Mining 1997 Issued October 1999
    Potash, Soda, and Borate Mineral Mining 1997 Issued October 1999 EC97N-2123I 1997 Economic Census Mining Industry Series U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU ACKNOWLEDGMENTS The staff of the Manufacturing and Con- The Geography Division staff developed struction Division prepared this report. geographic coding procedures and associ- Judy M. Dodds, Assistant Chief for Cen- ated computer programs. sus and Related Programs, was respon- The Economic Statistical Methods and Pro- sible for the overall planning, manage- gramming Division, Charles P. Pautler ment, and coordination. Patricia L. Jr., Chief, developed and coordinated the Horning, Chief, Construction and Miner- computer processing systems. Martin S. als Branch, assisted by M. Susan Bucci Harahush, Assistant Chief for Quinquen- and Susan L. DiCola, Section Chiefs, per- nial Programs, assisted by Barbara Lam- formed the planning and implementation. bert and Christina Arledge were respon- Richard Hough, Christopher D. sible for design and implementation of the Perrien, John F. Roehl, Eva J. Snapp, computer systems. Gary T. Sheridan, and Sarah B. Teichner provided primary Chief, Manufacturing and Construction staff assistance. Branch, Lori A. Guido and Roy A. Smith, Brian Greenberg, Assistant Chief for Section Chiefs, supervised the preparation Research and Methodology Programs, of the computer programs. assisted by Stacey Cole, Chief, Manufac- turing Programs Methodology Branch, and Computer Services Division, Debra Will- Robert Struble, Section Chief, provided iams, Chief, performed the computer pro- the mathematical and statistical tech- cessing. niques as well as the coverage operations. The staff of the Administrative and Cus- Jeffrey Dalzell and Cathy Ritenour pro- tomer Services Division, Walter C.
    [Show full text]
  • STUDIES of BORATE MINERAI,S (ID: X-RAY CRYSTALLOG- RAPHY of INYOITE and MEYERHOFFERITE; X-RAY and MORPHOLOGICAL CRYSTALLOGRAPHY of 2Cao-3Bzo .9H2O*
    STUDIES OF BORATE MINERAI,S (ID: X-RAY CRYSTALLOG- RAPHY OF INYOITE AND MEYERHOFFERITE; X-RAY AND MORPHOLOGICAL CRYSTALLOGRAPHY OF 2CaO-3Bzo .9H2O* C. L. Cunrsr, [/. S. GeologicalSuraey, Washington25, D. C. Ansrnacr fnyoite is monoclinic,P21/a, ao:10.63, bo:fi.A6, co:8.40rA, F:114.02,. 2CaO'3BrOa.9HzOistriclinic PT, ao: /.94, bo:9.452,co-7.412 A, a:101"21,,p-: l}l"7g,, t:99"49'. The findingsof Switzerin Palache(1938) for meyerhofferiteare confirmed. Powder patterns, partially indexed, are given for inyoite, meyerhofierite,and 2CaO.3BzOs.9HrO. INrnooucrroN ANDAcrwowr,ooGMENTS A systematic study of borate minerals has been continued in the pres- ent investigation with the determination of the r-ray crystallography of inyoite, 2CaO.3B2OB.13H2O, the *-ray crystallographyand morphology of the synthetic mineral 2CaO.38zOs.9HzO,and the redeterminationof the r-ray crystallography of meyerhofierite, 2CaO.3BzOt. jIJzO. Results obtained on meyerhofferite were in excellent agreementwith those previ- ously reported by Switzer in Palache (1933). Powder patterns of the three compounds have been measured and partially indexed. The work was undertaken primarily as a preliminary to the determina- tion of the structures. The writer is indebted to various colleaguesin the U. S. Geological Survey: Waldemar T. Schaller furnished the crystals studied; Mrs. Joan R. Clark made many of the calculations and film measurements; Howard T. Evans, Jr., made the goniometric measurementson and the drawing of 2CaO.3B2OB.9HsOand,also renderedmuch helpful advice; Fred A. Hildebrand prepared the powder patterns reported. ExpBnrlrpwrAr, WoRK All of the crystals used were synthetic. Schaller (personal communica- tion) has furnished the following description of the methods of prepara- tion: Inyoite (2:3:13).
    [Show full text]
  • Download PDF (402K)
    Geochemical Journal, Vol. 41, pp. 149 to 163, 2007 Boron isotope fractionation accompanying formation of potassium, sodium and lithium borates from boron-bearing solutions MAMORU YAMAHIRA, YOSHIKAZU KIKAWADA* and TAKAO OI Department of Chemistry, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8854, Japan (Received March 18, 2006; Accepted June 22, 2006) A series of experiments was conducted in which boron minerals were precipitated by water evaporation from solutions containing boron and potassium, sodium or lithium at 25°C, and boron isotope fractionation accompanying such mineral precipitation was investigated. In the boron-potassium ion system, K2[B4O5(OH)4]·2H2O, santite (K[B5O6(OH)4]·2H2O), KBO2·1.33H2O, KBO2·1.25H2O and sassolite (B(OH)3) were found deposited as boron minerals. Borax (Na2[B4O5(OH)4·8H2O) was found deposited in the boron-sodium ion system, and Li2B2O4·16H2O, Li2B4O7·5H2O, Li2B10O16·10H2O, LiB2O3(OH)·H2O and sassolite in the boron-lithium ion system. The boron isotopic analysis was con- 11 10 ducted for santite, K2[B4O5(OH)4]·2H2O, borax and Li2B2O4·16H2O. The separation factor, S, defined as the B/ B isotopic ratio of the precipitate divided by that of the solution, ranged from 0.991 to 1.012. Computer simulations for modeling boron mineral formations, in which polyborates were decomposed into three coor- dinated BO3 unit and four coordinated BO4 unit for the purpose of calculation of their boron isotopic reduced partition function ratios, were attempted to estimate the equilibrium constant, KB, of the boron isotope exchange between the boric – acid molecule (B(OH)3) and the monoborate anion (B(OH)4 ).
    [Show full text]
  • Inyoite Cab3o3(OH)5 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
    Inyoite CaB3O3(OH)5 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals, short prismatic along [001], tabular on {001}, exhibiting prominent {110} and {001} and a dozen other minor forms, to 2.5 cm; in cockscomb aggregates of pseudorhombohedral crystals; also coarse spherulitic, granular. Physical Properties: Cleavage: {001}, good; {010}, distinct. Fracture: Irregular. Tenacity: Brittle. Hardness = 2 D(meas.) = 1.875 D(calc.) = 1.87 Soluble in H2O. Optical Properties: Transparent, translucent on dehydration. Color: Colorless, white on dehydration. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c =37◦; Z ∧ c = –53◦. Dispersion: r< v, slight. α = 1.490–1.495 β = 1.501–1.505 γ = 1.516–1.520 2V(meas.) = 70◦–86◦ Cell Data: Space Group: P 21/a. a = 10.621(1)) b = 12.066(1) c = 8.408(1) β = 114◦1.2◦ Z=4 X-ray Powder Pattern: Monte Azul mine, Argentina. 7.67 (100), 2.526 (25), 3.368 (22), 1.968 (22), 2.547 (21), 3.450 (20), 2.799 (19) Chemistry: (1) (2) B2O3 37.44 37.62 CaO 20.42 20.20 + H2O 9.46 − H2O 32.46 H2O 42.18 rem. 0.55 Total 100.33 100.00 • (1) Hillsborough, Canada; remnant is gypsum. (2) CaB3O3(OH)5 4H2O. Occurrence: Along fractures and nodular in sedimentary borate deposits; may be authigenic in playa sediments. Association: Meyerhofferite, colemanite, priceite, hydroboracite, ulexite, gypsum. Distribution: In the USA, in California, from an adit on Mount Blanco, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Use of Boron in Detergents and its Impact on Reclamation Permalink https://escholarship.org/uc/item/2rw7k2r7 Author Ghavanloughajar, Maryam Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Use of Boron in Detergents and its Impact on Reclamation A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Civil Engineering by Maryam Ghavanloughajar 2015 ABSTRACT OF THE THESIS Use of Boron in Detergents and its Impact on Reclamation By Maryam Ghavanloughajar Master of Science in Civil Engineering University of California, Los Angeles, 2015 Professor Michael K. Stenstrom, Chair Many parts of the world are experiencing severe water drought and it affects societies both economically and environmentally. Therefore, conservation practices are essential to balance water supply and demand. Greywater or wastewaters from showers and luandries, if treated well can be a reliable source for activities such as irrigation, toilet flushing and car washing. Greywaters are not as contaminated as sewage but still may require treatment before reuse. The application of insufficiently treated water for irrigation can cause harm to plants and animals. Pollutant such as boron in greywater is of particular interest because many plants are sensitive to even low concentrations. High concentrations of boron can induce toxicity, reduce growth rate and yield in plants. Therefore, proposed greywater treatment systems need to consider the sensitivity of plant species and boron concentrations and potential removal. This thesis reviews boron chemistry, its effect on plants and currently available boron removal technologies.
    [Show full text]
  • Meyerhofferite Cab3o3(OH)
    Meyerhofferite CaB3O3(OH)5 • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Rare as complex acicular to crude crystals, to ∼4 cm, in fibrous divergent, radiating aggregates, commonly reticulated; may be nodular. Physical Properties: Cleavage: On {010}, perfect; in traces on {100} and {110}. Hardness = 2 D(meas.) = 2.120 D(calc.) = 2.125 Optical Properties: Transparent to translucent. Color: Colorless to white, pale yellow. Luster: Vitreous to silky. Optical Class: Biaxial (–). Orientation: X (165◦,62◦); Y (45◦300,47◦); Z (-83◦,55◦) [with c (0◦,0◦) and b∗ (0◦,90◦) using (φ,ρ)]. Dispersion: r> v.α= 1.500 β = 1.535 γ = 1.560 2V(meas.) = 78◦ Cell Data: Space Group: P 1. a = 6.632(1) b = 8.337(1) c = 6.4748(6) α =90.81(1)◦ β = 101.97(1)◦ γ =86.76(1)◦ Z=2 X-ray Powder Pattern: Mt. Blanco, California, USA. (ICDD 12-411). 8.31 (100), 6.47 (100), 4.97 (25), 4.15 (20), 3.15 (20), 3.07 (20), 2.501 (20) Chemistry: (1) (2) B2O3 46.40 46.71 CaO 25.45 25.08 + H2O 27.75 − H2O 1.01 H2O 28.21 Total 100.61 100.00 • (1) Mt. Blanco, California, USA. (2) CaB3O3(OH)5 H2O. Occurrence: Typically a minor component of sedimentary or lake-bed borate deposits. Association: Inyoite, colemanite, hydroboracite, ulexite. Distribution: In the USA, from the Mt. Blanco deposit and along Gower Gulch, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co., California.
    [Show full text]
  • Borate Minerals. Ii. a Hierarchy of Structures
    731 The Canadian Mineralogist Vol 37, pp 731-'162(1999) BORATEMINERALS. II. A HIERARCHYOF STRUCTURES BASEDUPON THE BORATE FUNDAMENTAL BUILDING BLOCK JOEL D. GRICE Research Division, Canadian Museum of Nature, p O. Box 3443, Station D, Ottawa, Ontario Klp 6p4, Canada PETERC. BURNS Department of Civil Engineering and Geological Sciences,(Jniversity of Notre Dame, Notre Dame, Indiana 46556, U.S.A. FRANK C. HAWTHORNES Department of Geological Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada AesrRAcr A hierarchical structural classification is developed for borate minerals, based on the linkage of (BQ) triangles and (BO+) tetrahedra to form FBBs (fundamental building blocks) that polymerize to form the structural unit, a tightly bonded anionic polyhedral array whose excesscharge is baianced by the presenceof large low-valence interstitial cations. Thirty-one minerals, with nineteen distinct structure-types,contain isolated borate polyhedra. Twenty-seven minerals, with twenty-five distinct struc- ture-types, contain finite clusters of borate polyhedra. Ten minerals, with ten distinct structue-types, contain chains of borate polyhedra. Fifteen minerals, with thirteen distinct structue-types, contain sheets of borate polyhedra. Fifteen minerals, with thirteen distinct sEucture-types,contain frameworks of borate polyhedra. It is only the close-packed structures of the isolated- polyhedra class that show significant isotypism Kelwords: borate minerals, crystal sffuctures, structural hierarchy. Sowenn Nous ddvelopponsici un sch6made classification structurale des mindraux du groupe des borates,fond6 sur I'articulation des ffiangles (BO:) et des t6trabdres(BOa), qui forment des modules structuraux fondamentaux. Ceux-ci, polym6ris6s, constituent l'unitd structuralede la maille, un agencementcompact d'anions fait de ces polyddres dont I'excddent de charge est neutralis6par des cations interstitiels h rayon relativement gros et d valence relativement faible.
    [Show full text]
  • Origin of the Kramer Borax Deposit, Boron, CA
    A 50 year retrospective 1 OUTLINE 1. A brief history of borax 2. Kramer borax deposit a) Setting and Discovery b) Mineralogy of sedimentary borates c) Stratigraphy and Lithology d) Petrography and implications for geologic setting e) Solubility studies and modeling lake characteristics f) Comparable modern analogues 3. New evidence a) Turkish and Argentinian deposits b) Boron isotopic studies 4. Broader questions – Source water controls (thermal springs), B-As-Sb association, igneous-metamorphic controls on boron in thermal waters 2 Why give this talk? 1. Old (but rusty) material to me, new to most of you 2. Desire to see if ideas have changed in the past 50+ years. 3. Citation of my work even today suggests I did something right. 4. Wish to compare Kramer work with evidence from newer borate deposits in Turkey and South America 5. A wish to evaluate these ideas in light of new evidence using tools that weren’t available in 1964 6. A chance to ponder broader questions about boron’s geochemical cycle. 7. Work done so long ago that if you ask penetrating questions I can always plead a “senior moment” 3 What was unique about my research on the Kramer deposits? • Used a combination of geological tools (Field AND lab work – rare in 1964) • Stratigraphy, Petrography, and XRD based mineralogy • Experimental solubility studies of effects of other salts on Na-borate solubilities • Field studies of other possible borate environments (Borax Lake, Teels and Columbus Marsh, NV, Death Valley, Searles Lake) • Benefits of discussions with an all-star support team with similar interests (Mary Clark, Blair Jones, G.I.
    [Show full text]