Trace Elements and Minerals in Fumarolic Sulfur: the Case of Ebeko Volcano, Kuriles

Total Page:16

File Type:pdf, Size:1020Kb

Trace Elements and Minerals in Fumarolic Sulfur: the Case of Ebeko Volcano, Kuriles Hindawi Geofluids Volume 2018, Article ID 4586363, 16 pages https://doi.org/10.1155/2018/4586363 Research Article Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles E. P. Shevko,1 S. B. Bortnikova,2 N. A. Abrosimova,2 V. S. Kamenetsky ,3,4 S. P. Bortnikova,2 G. L. Panin,2 and M. Zelenski 3 1 Sobolev Institute of Geology and Mineralogy, SBRAS, Novosibirsk 630090, Russia 2Trofmuk Institute of Petroleum Geology and Geophysics, SBRAS, No. 3, Novosibirsk 630090, Russia 3Institute of Experimental Mineralogy RAS, Chernogolovka 142432, Russia 4EarthSciencesandCODES,UniversityofTasmania,PrivateBag79,Hobart,TAS7001,Australia Correspondence should be addressed to M. Zelenski; [email protected] Received 25 June 2017; Revised 13 October 2017; Accepted 14 December 2017; Published 20 March 2018 Academic Editor: Joerg Goettlicher Copyright © 2018 E. P. Shevko et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Native sulfur deposits on fumarolic felds at Ebeko volcano (Northern Kuriles, Russia) are enriched in chalcophile elements (As- Sb-Se-Te-Hg-Cu) and contain rare heavy metal sulfdes (Ag2S, HgS, and CuS), native metal alloys (Au2Pd), and some other low- solubility minerals (CaWO4, BaSO4). Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite) as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. Te comparison of elemental abundances in sulfur and unaltered rocks (andesite) demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti) and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te), halogens (Br and I), and Hg are likely transported as volatile species, even ∘ at temperatures slightly above 100 C. Te presence of rare sulfdes (Ag2S, CuS, and HgS) together with abundant FeS2 in low- temperature fumarolic environments can be explained by the hydrochloric leaching of rock particles followed by the precipitation of low-solubility sulfdes induced by the reaction of acid solutions with H2S at ambient temperatures. Te elemental composition of native sulfur can be used to qualitatively estimate elemental abundances in low-temperature fumarolic gases. 1. Introduction sublimates are similar to those of ore bodies that form in magmatic environment [2, 5–7]. Because the main compo- Volcanic fumaroles are surfcial manifestations of magmatic nent of the majority of fumarolic gases is water steam, they degassing. Fumarolic gases mainly comprise the volatile can be condensed in a special cooled fask. Such condensates components of H2O, CO2, SO2, HCl, and HF, but high- ∘ ofen contain signifcant concentrations of metals (i.e., tens to temperature fumarolic gases (>400 C) also commonly trans- hundreds of ppm) and are used to study the gaseous transport port many metallic and nonmetallic compounds, which have of metals (e.g., [4, 5, 8, 9]). ∘ sufciently high vapor pressure at elevated temperatures. Low-temperature fumaroles (i.e., 200 C and lower) are Tese include native elements, oxides, halides, and more not well-characterized in terms of their gaseous transport due complex compounds (e.g., [1–4]). to their generally low concentrations of metallic elements; Rapid decrease in the temperature of gas at or near the saturation vapor pressures of these elements decrease the surface, together with abrupt change from reducing to by 1-2 orders of magnitude for every hundred degrees. Very oxidizing conditions, results in the oversaturation of the low metal contents in low-temperature condensates are ofen transported volatile compounds. Te latter precipitate inside obscured by an overwhelming amount of colloidal sulfur or around fumaroles, forming black or colorful deposits, [10, 11]. Metals can be adsorbed by sulfur particles and are which are called sublimates. It has long been noticed that the further deposited on the bottle (vial) walls. Because native zonation and compositions of high-temperature fumarolic sulfur can only be dissolved in hot aqua regia (which may 2 Geofuids introduce its own contaminants), the accurate analysis of low- these metals suggested that they originated from magma via temperature gas condensates is a complex problem. volcanic degassing. At the same time, metals and aerosol particles are In the present work, we report new data on the chemical transported by low-temperature gas and precipitate together composition of native sulfur, leachates from native sul- with native sulfur around fumarole vents, forming well- fur, and rare minerals as inclusions in native sulfur from known yellow incrustations. Tese incrustations and even Ebeko volcano (North Kuriles, Russian Far East) in order well-shapedsulfurcrystalsofencontainmineralandrock to understand the transport of elements in low-temperature inclusions, which were also carried by and deposited from fumarolic gases. Native sulfur from the volcano was studied fumarolic gas. Such sulfur can help to study the gases using a variety of modern methods (including Synchrotron themselves. All components carried by the gas are inevitably Radiation induced X-ray Fluorescence Spectroscopy (SR- found in fumarolic sulfur; therefore, the composition of XRF), leaching by water followed by ion chromatography thegascanbeestimatedataqualitativelevel.Unfortu- and ICP-AES, and dissolution in carbon disulfde followed by nately, the quantitative analysis of this gas composition using SEM-EDS). Ebeko was chosen because of its accessibility as fumarolic sulfur is impossible due to the strong fractionation wellasthefactthatitfeaturesvariousandpersistentfumarolic of elements, including sulfur itself that occurs during the activity occurring at several fumarolic felds. Our data show dischargeofgas.Mostofthesulfurandothermetallicand that Ebeko sulfur is enriched in volatile chalcophile elements. nonmetallic elements escape fumarolic vents with the gas Te presence of rare sulfdes (i.e., argentite, covellite, and and are dissipated in the environment; thus, only a small cinnabar) and abundant pyrite may be fully explained by the (and unknown) fraction of these elements is deposited in acid leaching of rock particles followed by sulfde precipi- tation from leachates; that is, rock aerosols may serve as a incrustations. source for chalcophile metals and iron. Te existing data on volcanic sulfur composition data have been obtained using mass-spectrometry (ICP-MS), 2. Study Area and Methods atomic emission spectroscopy (ICP-AES), scanning elec- ∘ ∘ tron microscopy with energy-dispersive spectroscopy (SEM- 2.1. Ebeko Volcano and Fumaroles. Ebeko (51.41 N, 176.01 E, EDS), refectance spectrometry [12–15], and wet chemical 1156 m asl) is an active andesitic stratovolcano in the Kurile methods [16]. For example, Kargel et al. [12] studied the trace island arc, where the Pacifc Plate is being subducted under element chemistry of native sulfur from a terrestrial volcanic- the Okhotsk Plate. Ebeko is located in the northern part hydrothermal environment to determine the relationship of Paramushir Island (Figure 1), 10 km from the town of betweenthecolorofsulfuranditstraceelement/trace Severo-Kurilsk.Tesummitofthisvolcanocomprisesfour mineral contents. A few tenths of a percent to a few percent adjoining craters that are 250–300 m wide and 70–100 m deep of chalcophile trace elements (As, Se) commonly occur in and extend in the meridian direction. Several cold lakes are sulfur and produce material with yellow, brown, orange, located in the Middle and South craters; a hot lake is located and red tints. Two-tenths of a percent to two percent of in the North crater. crystalline pyrite (FeS2) commonly produces green, gray, and Ebeko is characterized by occasional phreatomagmatic black volcanic sulfur. Specimens that have formed by direct eruptions and abundant permanent fumaroles and thermal deposition from vapor or by the melting/recrystallization springs [17]. Between eruptions, the volcano exists in a state of such deposits have a bright yellow color and the purest of strong and persistent fumarolic and hydrothermal activity. compositions. Numerous fumaroles are located inside craters and on the Zeng et al. [15] analyzed the trace and rare earth element outer slopes of the cones (Figures 1 and 2). Tese fumaroles compositions of native sulfur “balls” from a hydrothermal belong to four fumarolic felds: the NE fumarolic feld (which feld in Northeast Taiwan. Tey determined that their con- is the largest feld); the “July” fumarolic feld; the South feld; tentsofAl,Ti,Rb,Cs,Ba,V,Cr,Co,Ni,Nb,Pb,T,U,andREE and the SE feld. Fumaroles are encrusted with native sulfur were mostly derived from andesite; their contents of Mg, K, of diferent colors, ranging from bright yellow to dark gray and Mn mostly originated from seawater; and their contents to pink (Figures 2 and 3), and reached a maximum height of of Fe, Cu, Zn, and Ni were partly derived from magma. Using 1.5 m during the time of sampling (Figure 2). Te main com- sulfur composition data, they suggested a “glue pudding” ponent of Ebeko fumarolic gases is H2O(97–99mol%);the growth model to explain the origin of these native sulfur other components are CO2,HCl,SO2,H2S, N2,Ar,HF,H2, balls. Gof et al. [16] studied various metals in native sulfur CH4,CO,andHe[18,19]. to
Recommended publications
  • Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
    Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral
    [Show full text]
  • Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Hog Heaven Mining District, Flathead County, Montana
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2020 MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA Ian Kallio Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geological Engineering Commons MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA by Ian Kallio A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Geoscience Geology Option Montana Tech 2020 ii Abstract The Hog Heaven mining district in northwestern Montana is unique in that it is a high- sulfidation epithermal system containing high Ag-Pb-Zn relative to Au-Cu, with a very high Ag to Au ratio (2,330:1). The deposits are hosted within the Cenozoic Hog Heaven volcanic field (HHVF), a 30 to 36 Ma suite that consists predominantly of rhyodacite flow-dome complexes and pyroclastic rocks. The HHVF is underlain by shallow-dipping siliclastic sediments of the Mesoproterozoic Belt Supergroup. These sediments are known to host important SEDEX (e.g., Sullivan) and red-bed copper (e.g., Spar Lake, Rock Creek, Montanore) deposits rich in Ag-Pb- Zn-Cu-Ba. The HHVF erupted through and deposited on the Belt strata during a period of Oligocene extension. Outcrops and drill core samples from Hog Heaven show alteration patterns characteristic of volcanic-hosted, high-sulfidation epithermal deposits. Vuggy quartz transitions laterally into quartz-alunite alteration where large sanidine phenocrysts (up to 4 cm) have been replaced by fine-grained, pink alunite, and/or argillic alteration that is marked by an abundance of white kaolinite-dickite clay.
    [Show full text]
  • Lassen Volcanic Fumaroles and Hot Springs: Analog for Mars
    Lassen Volcanic Fumaroles and Hot Springs: Analog for Mars Lindsay J. McHenry1, Teri L. Gerard, Gabrielle L. Walters Department of Geosciences, University of Wisconsin- Milwaukee Abstract We are conducting a pilot study on the hydrothermal alteration of lavas at Lassen Volcanic National Park as an analog for potential hydrothermal deposits on Mars. Lassen has hot springs and fumaroles that have altered its lavas into silica, sulfates, and phyllosilicates, all mineral types also identified on Mars. Hydrothermal environments were likely common on Mars (due to evidence of early aqueous and a long record of volcanic activity), and such environments could have remained habitable long after the surface cooled and desiccated. However, some hydrothermal environments are more habitable than others, and being able to distinguish between the deposits of hostile acid-sulfate fumarole and more accommodating near-neutral hot spring environments can provide clues to habitability. Lassen hydrothermal environments produce silica by both acid-sulfate leaching and precipitation from neutral hydrothermal waters, both of which have been suggested as potential origins for deposits in Columbia Hills of Gusev Crater on Mars. Objectives The objectives of this study are to: 1. Determine the mineralogical and geochemical patterns of lava alteration associated with acid-sulfate leaching at Lassen hot springs and fumaroles, and contrast them with the patterns associated with more neutral, Cl-rich hydrothermal fluids at fumaroles and hot springs within Lassen park. 2. Compare these results to the mineralogy and geochemistry of hydrothermal deposits observed in the Columbia Hills of Gusev Crater, and determine if either scenario is more consistent with the observations.
    [Show full text]
  • Download PDF (402K)
    Geochemical Journal, Vol. 41, pp. 149 to 163, 2007 Boron isotope fractionation accompanying formation of potassium, sodium and lithium borates from boron-bearing solutions MAMORU YAMAHIRA, YOSHIKAZU KIKAWADA* and TAKAO OI Department of Chemistry, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8854, Japan (Received March 18, 2006; Accepted June 22, 2006) A series of experiments was conducted in which boron minerals were precipitated by water evaporation from solutions containing boron and potassium, sodium or lithium at 25°C, and boron isotope fractionation accompanying such mineral precipitation was investigated. In the boron-potassium ion system, K2[B4O5(OH)4]·2H2O, santite (K[B5O6(OH)4]·2H2O), KBO2·1.33H2O, KBO2·1.25H2O and sassolite (B(OH)3) were found deposited as boron minerals. Borax (Na2[B4O5(OH)4·8H2O) was found deposited in the boron-sodium ion system, and Li2B2O4·16H2O, Li2B4O7·5H2O, Li2B10O16·10H2O, LiB2O3(OH)·H2O and sassolite in the boron-lithium ion system. The boron isotopic analysis was con- 11 10 ducted for santite, K2[B4O5(OH)4]·2H2O, borax and Li2B2O4·16H2O. The separation factor, S, defined as the B/ B isotopic ratio of the precipitate divided by that of the solution, ranged from 0.991 to 1.012. Computer simulations for modeling boron mineral formations, in which polyborates were decomposed into three coor- dinated BO3 unit and four coordinated BO4 unit for the purpose of calculation of their boron isotopic reduced partition function ratios, were attempted to estimate the equilibrium constant, KB, of the boron isotope exchange between the boric – acid molecule (B(OH)3) and the monoborate anion (B(OH)4 ).
    [Show full text]
  • On the Nature and Significance of Rarity in Mineralogy
    1 1 REVISION #2—American Mineralogist—January 12, 2016 2 3 On the nature and significance of rarity in mineralogy 4 5 Robert M. Hazen1* and Jesse H. Ausubel2 6 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D. C. 20015, USA. 7 2Program for the Human Environment, Rockefeller University, 1230 York Ave., New York, New York 10021, USA. 8 9 ABSTRACT 10 More than half of the >5000 approved mineral species are known from 5 or fewer localities 11 and thus are rare. Mineralogical rarity arises from different circumstances, but all rare mineral 12 species conform to one or more of 4 criteria: (1) P-T-X range: minerals that form only under 13 highly restricted conditions in pressure-temperature-composition space; (2) Planetary constraints: 14 minerals that incorporate essential elements that are rare or that form at extreme conditions that 15 seldom occur in Earth’s near-surface environment; (3) Ephemeral phases: minerals that rapidly 16 break down under ambient conditions; and (4) Collection biases: phases that are difficult to 17 recognize because they lack crystal faces or are microscopic, or minerals that arise in lithological 18 contexts that are difficult to access. Minerals that conform to criterion (1), (2), or (3) are 19 inherently rare, whereas those matching criterion (4) may be much more common than 20 represented by reported occurences. 21 Rare minerals, though playing minimal roles in Earth’s bulk properties and dynamics, are 22 nevertheless of significance for varied reasons. Uncommon minerals are key to understanding 23 the diversity and disparity of Earth’s mineralogical environments, for example in the prediction 24 of as yet undescribed minerals.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Use of Boron in Detergents and its Impact on Reclamation Permalink https://escholarship.org/uc/item/2rw7k2r7 Author Ghavanloughajar, Maryam Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Use of Boron in Detergents and its Impact on Reclamation A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Civil Engineering by Maryam Ghavanloughajar 2015 ABSTRACT OF THE THESIS Use of Boron in Detergents and its Impact on Reclamation By Maryam Ghavanloughajar Master of Science in Civil Engineering University of California, Los Angeles, 2015 Professor Michael K. Stenstrom, Chair Many parts of the world are experiencing severe water drought and it affects societies both economically and environmentally. Therefore, conservation practices are essential to balance water supply and demand. Greywater or wastewaters from showers and luandries, if treated well can be a reliable source for activities such as irrigation, toilet flushing and car washing. Greywaters are not as contaminated as sewage but still may require treatment before reuse. The application of insufficiently treated water for irrigation can cause harm to plants and animals. Pollutant such as boron in greywater is of particular interest because many plants are sensitive to even low concentrations. High concentrations of boron can induce toxicity, reduce growth rate and yield in plants. Therefore, proposed greywater treatment systems need to consider the sensitivity of plant species and boron concentrations and potential removal. This thesis reviews boron chemistry, its effect on plants and currently available boron removal technologies.
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • Natural Resource Condition Assessment
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Sunset Crater Volcano National Monument Natural Resource Condition Assessment Natural Resource Report NPS/SCPN/NRR—2018/1837 ON THIS PAGE Desert globemallow. Photo Credit: NPS ON THE COVER A view of yellow sunflowers with Sunset Crater Volcano in the background. Photo Credit: NPS Sunset Crater Volcano National Monument Natural Resource Condition Assessment Natural Resource Report NPS/SCPN/NRR—2018/1837 Author Name(s) Lisa Baril1, Patricia Valentine-Darby1, Kimberly Struthers1, Paul Whitefield2 , Kirk Anderson3, Mark Brunson1 1Utah State University Department of Environment and Society Logan, Utah 2National Park Service Flagstaff Area National Monuments Flagstaff, Arizona 3Museum of Northern Arizona Flagstaff, Arizona Editing and Design Kimberly Struthers1 December 2018 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations.
    [Show full text]
  • Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique
    Russian Geology and Geophysics © 2020, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 61, No. 5-6, pp. 675–688, 2020 DOI:10.15372/RGG2019167 Geologiya i Geofizika Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique I.V. Pekova,b, , A.A. Agakhanovс, N.V. Zubkovaa, N.N. Koshlyakovaa, N.V. Shchipalkinaa, F.D. Sandalova, V.O. Yapaskurta, A.G. Turchkovaa, E.G. Sidorovd a Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia b Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, ul. Kosygina 19, Moscow, 119991, Russia c Fersman Mineralogical Museum, Leninskii pr. 18/2, Moscow, 119071, Russia d Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, bul. Piipa 9, Petropavlovsk-Kamchatsky, 683006, Russia Received 1 July 2019; accepted 28 August 2019 Abstract—We overview recent data on the mineralogy of oxidizing-type fumaroles of the Tolbachik Volcano (Kamchatka, Russia), with the main focus on the chemical specifics of the minerals. The active fumarole fields of Tolbachik are the most prominent mineral- forming exhalative system of this type in the world. About 350 mineral species, including 123 minerals first discovered here, are reliably identified in the Tolbachik fumaroles. The species diversity and the specifics of this mineralization are due to the unique combination of the physicochemical conditions and mechanisms of its formation: high temperatures, atmospheric pressure, superhigh oxygen fugacity, gas transport of most of chemical elements, and direct deposition of many high-temperature minerals from volcanic gases with a specific geo- chemical composition, including strong enrichment in alkaline metals and chalcophile (“ore”) elements.
    [Show full text]
  • Industrial Minerals and Rocks in the 21St Century
    Industrial Minerals and Rocks in the 21st Century Milos Kuzvart Charles University, Prague NONMETALLICS: DEFINITION, CLASSIFICATION, OCCURENCE, ORIGIN, UTILIZATION The term 'industrial mineral' is not defined so strictly as the term 'ore' which is mostly a source of metal, or as that of 'fossil fuel' (coal, oil, natural gas), which is predominantly a source of energy. In both the latter cases the characteristic feature is the chemistry of the ore (besides the content of impurities, dressability, etc.) or fuel (besides the content of dirt bands, sulfur, etc.). The characteristic features of industrial minerals, however, líe in their physical properties (e.g., fibrosity of asbestos, insulatory properties of mica, the high specific gravity of barite). In this artiele raw materials of several types are considered under the term "industrial mineral s and rocks": 1. raw materials that are used in industry in variously prepared forms as minerals (e.g., talc, asbestos, diamond) or rocks (diatomite, bentonite, ochre); 2. raw material s that serve as a source of non-metallic elements (ftuorite for ftuori­ ne, apatite for phosphorus) or their simple compounds (e.g., borates for H3B03 or B 20 3); 3. raw materials of non-metallic habit that are source of metals, and also of their com­ pounds employed in other than metallurgical industries (e.g., beryl as a source of BeO, magnesite of MgO, bauxite or Al-rich laterite as a source of Alz03; all these three oxides are refractory materials); 4. building material s (rocks for aggregate, together with gravel and sand for concrete, decorative stone and roofing slate, limestone for cement and lime, brickloam).
    [Show full text]
  • Pegmatite Genesis: State of the Art
    Eur. J. Mineral. 2008, 20, 421–438 Published online August 2008 Paper presented at the symposium “Granitic Pagmatites: the State of the Art”, Porto, May 2007 Pegmatite genesis: state of the art Wm. B. “Skip” SIMMONS* and Karen L. WEBBER Department of Earth and Environmental Sciences, University of New Orleans, New Orleans, LA 70148, USA *Corresponding author, e-mail: [email protected] Abstract: No one universally accepted model of pegmatite genesis has yet emerged that satisfactorily explains all the diverse features of granitic pegmatites. Genesis from residual melts derived from the crystallization of granitic plutons is favoured by most researchers. Incompatible components, fluxes, volatiles and rare elements, are enriched in the residual melts. The presence of fluxes and volatiles, which lower the crystallization temperature, decrease nucleation rates, melt polymerization and viscosity, and increase diffusion rates and solubility, are considered to be critical to the development of large crystals. A number of new concepts have shed light on problems related to pegmatite genesis. Cooling rates calculated from thermal cooling models demonstrate that shallow-level pegmatites cool radically more rapidly than previously believed. Rapid cooling rates for pegmatites represent a quantum shift from the widely held view that the large crystals found in pegmatites are the result of very slow rates of cooling and crystal growth. Experimental and field evidence both suggest that undercooling and disequilibrium crystallization dominate pegmatite crys- tallization. London’s constitutional zone refining model of pegmatite evolution involves disequilibrium crystallization from an undercooled, flux-bearing granitic melt. The melt is not necessarily flux–rich and the model does not require the presence of an aqueous vapor phase.
    [Show full text]
  • University of California Los Angeles USE of BORON in DETERGENTS
    University of California Los Angeles USE OF BORON IN DETERGENTS AND ITS IMPACT ON RECLAMATION A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Civil Engineering by Maryam Ghavanloughajar Summer, 2015 1 Table of Contents 1. Abstract ................................................................................................................................................. 3 2. Introduction .......................................................................................................................................... 3 3. Literature Review .................................................................................................................................. 7 3.1. Chemical properties of boron ....................................................................................................... 7 3.1.1. Boric acid ............................................................................................................................. 12 3.1.2. Borax ................................................................................................................................... 15 3.2. Boron impact on plants ............................................................................................................... 17 3.3. Survey of boron in products........................................................................................................ 21 4. Boron removal technologies ..............................................................................................................
    [Show full text]