On the Nature and Significance of Rarity in Mineralogy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral -
Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Hog Heaven Mining District, Flathead County, Montana
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2020 MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA Ian Kallio Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geological Engineering Commons MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA by Ian Kallio A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Geoscience Geology Option Montana Tech 2020 ii Abstract The Hog Heaven mining district in northwestern Montana is unique in that it is a high- sulfidation epithermal system containing high Ag-Pb-Zn relative to Au-Cu, with a very high Ag to Au ratio (2,330:1). The deposits are hosted within the Cenozoic Hog Heaven volcanic field (HHVF), a 30 to 36 Ma suite that consists predominantly of rhyodacite flow-dome complexes and pyroclastic rocks. The HHVF is underlain by shallow-dipping siliclastic sediments of the Mesoproterozoic Belt Supergroup. These sediments are known to host important SEDEX (e.g., Sullivan) and red-bed copper (e.g., Spar Lake, Rock Creek, Montanore) deposits rich in Ag-Pb- Zn-Cu-Ba. The HHVF erupted through and deposited on the Belt strata during a period of Oligocene extension. Outcrops and drill core samples from Hog Heaven show alteration patterns characteristic of volcanic-hosted, high-sulfidation epithermal deposits. Vuggy quartz transitions laterally into quartz-alunite alteration where large sanidine phenocrysts (up to 4 cm) have been replaced by fine-grained, pink alunite, and/or argillic alteration that is marked by an abundance of white kaolinite-dickite clay. -
George Robert Rossman Feb 15, 1995
George Robert Rossman 20-Jun-2020 Present Position: Professor of Mineralogy Option Representative for Geochemistry Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California 91125-2500 Office Telephone: (626)-395-6471 FAX: (626)-568-0935 E-mail: [email protected] Residence: Pasadena, California Birthdate: August 3, l944, LaCrosse, Wisconsin Education: B.S. (Chemistry and Mathematics), Wisconsin State University, Eau Claire, 1966, Summa cum Laude Ph.D. (Chemistry), California Institute of Technology, Pasadena, 1971 Experience: California Institute of Technology Division of Geological and Planetary Sciences a) 1971 Instructor in Mineralogy b) 1971-1974 Assistant Professor of Mineralogy and Chemistry c) 1974-1977 Assistant Professor of Mineralogy d) 1977-1984 Associate Professor of Mineralogy e) 1984-2008 Professor of Mineralogy f) 2008-2015 Eleanor and John R. McMillan Professor of Mineralogy e) 2015- Professor of Mineralogy Principal Research Interests: a) Spectroscopic studies of minerals. These studies include problems relating to the origin of color phenomena in minerals; site ordering in crystals; pleochroism; metal ions in distorted sites; analytical applications. b) The role of low concentrations of water and hydroxide in nominally anhydrous solids. Analytical methods for OH analysis, mode of incorporation, role of OH in modifying physical and chemical properties, and its relationship to conditions of formation in the natural environment. c) Long term radiation damage effects in minerals from background levels of natural radiation. The effects of high level ionizing radiation on minerals. d) X-ray amorphous minerals. These studies have involved the physical chemical study of bioinorganic hard parts of marine organisms and products of terrestrial surface weathering, and metamict minerals. -
Extraterrestrial Mineral Harder Than Diamonds Discovered in Israel Jan 15, 2019 Helen Flatley
Extraterrestrial Mineral Harder than Diamonds Discovered in Israel Jan 15, 2019 Helen Flatley A new discovery in the mountains of northern Israel has caused significant excitement for geologists around the world. While working in the Zevulun Valley, close to Mount Carmel, Israeli mining company Shefa Yamim found a new mineral never before discovered on earth. The International Mineralogical Association regularly approves new minerals for its official list, with up to 100 new substances added to the register each year. However, this latest discovery was hailed as a significant event, as it was previously believed that this type of mineral was only found on extraterrestrial material. The new mineral loosely resembles allendeite, a mineral previously seen on the Allende meteorite that fell to earth in February of 1969. However, this is the first time that such a substance has been found to naturally occur in rock on Earth itself. The CEO of Shefa Yamim, Abraham Taub, told Haaretz that the mineral had been named carmeltazite, after the place of its discovery and the minerals contained within its structure: titanium, aluminum and zirconium. While the majority of the new minerals approved by the International Mineralogical Association are unspectacular in appearance, carmeltazite offers considerable commercial opportunities, as it resembles other gemstones used in the making of jewelry. The crystal structure of carmeltazite. Photo by MDPI CC BY-SA 4.0 This strange new mineral was found embedded in cracks within sapphire, the second hardest mineral (after diamonds) found to occur naturally on earth. Carmeltazite closely resembles sapphire and ruby in its chemical composition, and is found in black, blue-green, or orange-brown colors, with a metallic hue. -
Mineralogical and Oxygen Isotopic Study of a New Ultrarefractory Inclusion in the Northwest Africa 3118 CV3 Chondrite
Meteoritics & Planetary Science 55, Nr 10, 2184–2205 (2020) doi: 10.1111/maps.13575 Mineralogical and oxygen isotopic study of a new ultrarefractory inclusion in the Northwest Africa 3118 CV3 chondrite Yong XIONG1, Ai-Cheng ZHANG *1,2, Noriyuki KAWASAKI3, Chi MA 4, Naoya SAKAMOTO5, Jia-Ni CHEN1, Li-Xin GU6, and Hisayoshi YURIMOTO3,5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China 2CAS Center for Excellence in Comparative Planetology,Hefei, China 3Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 5Isotope Imaging Laboratory, Creative Research Institution Sousei, Hokkaido University, Sapporo 001-0021, Japan 6Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China *Corresponding author. E-mail: [email protected] (Received 27 March 2020; revision accepted 09 September 2020) Abstract–Calcium-aluminum-rich inclusions (CAIs) are the first solid materials formed in the solar nebula. Among them, ultrarefractory inclusions are very rare. In this study, we report on the mineralogical features and oxygen isotopic compositions of minerals in a new ultrarefractory inclusion CAI 007 from the CV3 chondrite Northwest Africa (NWA) 3118. The CAI 007 inclusion is porous and has a layered (core–mantle–rim) texture. The core is dominant in area and mainly consists of Y-rich perovskite and Zr-rich davisite, with minor refractory metal nuggets, Zr,Sc-rich oxide minerals (calzirtite and tazheranite), and Fe-rich spinel. The calzirtite and tazheranite are closely intergrown, probably derived from a precursor phase due to thermal metamorphism on the parent body. -
Trace Elements and Minerals in Fumarolic Sulfur: the Case of Ebeko Volcano, Kuriles
Hindawi Geofluids Volume 2018, Article ID 4586363, 16 pages https://doi.org/10.1155/2018/4586363 Research Article Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles E. P. Shevko,1 S. B. Bortnikova,2 N. A. Abrosimova,2 V. S. Kamenetsky ,3,4 S. P. Bortnikova,2 G. L. Panin,2 and M. Zelenski 3 1 Sobolev Institute of Geology and Mineralogy, SBRAS, Novosibirsk 630090, Russia 2Trofmuk Institute of Petroleum Geology and Geophysics, SBRAS, No. 3, Novosibirsk 630090, Russia 3Institute of Experimental Mineralogy RAS, Chernogolovka 142432, Russia 4EarthSciencesandCODES,UniversityofTasmania,PrivateBag79,Hobart,TAS7001,Australia Correspondence should be addressed to M. Zelenski; [email protected] Received 25 June 2017; Revised 13 October 2017; Accepted 14 December 2017; Published 20 March 2018 Academic Editor: Joerg Goettlicher Copyright © 2018 E. P. Shevko et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Native sulfur deposits on fumarolic felds at Ebeko volcano (Northern Kuriles, Russia) are enriched in chalcophile elements (As- Sb-Se-Te-Hg-Cu) and contain rare heavy metal sulfdes (Ag2S, HgS, and CuS), native metal alloys (Au2Pd), and some other low- solubility minerals (CaWO4, BaSO4). Sulfur incrustations are impregnated with numerous particles of fresh and altered andesite groundmass and phenocrysts (pyroxene, magnetite) as well as secondary minerals, such as opal, alunite, and abundant octahedral pyrite crystals. Te comparison of elemental abundances in sulfur and unaltered rocks (andesite) demonstrated that rock-forming elements (Ca, K, Fe, Mn, and Ti) and other lithophile and chalcophile elements are mainly transported by fumarolic gas as aerosol particles, whereas semimetals (As, Sb, Se, and Te), halogens (Br and I), and Hg are likely transported as volatile species, even ∘ at temperatures slightly above 100 C. -
Lassen Volcanic Fumaroles and Hot Springs: Analog for Mars
Lassen Volcanic Fumaroles and Hot Springs: Analog for Mars Lindsay J. McHenry1, Teri L. Gerard, Gabrielle L. Walters Department of Geosciences, University of Wisconsin- Milwaukee Abstract We are conducting a pilot study on the hydrothermal alteration of lavas at Lassen Volcanic National Park as an analog for potential hydrothermal deposits on Mars. Lassen has hot springs and fumaroles that have altered its lavas into silica, sulfates, and phyllosilicates, all mineral types also identified on Mars. Hydrothermal environments were likely common on Mars (due to evidence of early aqueous and a long record of volcanic activity), and such environments could have remained habitable long after the surface cooled and desiccated. However, some hydrothermal environments are more habitable than others, and being able to distinguish between the deposits of hostile acid-sulfate fumarole and more accommodating near-neutral hot spring environments can provide clues to habitability. Lassen hydrothermal environments produce silica by both acid-sulfate leaching and precipitation from neutral hydrothermal waters, both of which have been suggested as potential origins for deposits in Columbia Hills of Gusev Crater on Mars. Objectives The objectives of this study are to: 1. Determine the mineralogical and geochemical patterns of lava alteration associated with acid-sulfate leaching at Lassen hot springs and fumaroles, and contrast them with the patterns associated with more neutral, Cl-rich hydrothermal fluids at fumaroles and hot springs within Lassen park. 2. Compare these results to the mineralogy and geochemistry of hydrothermal deposits observed in the Columbia Hills of Gusev Crater, and determine if either scenario is more consistent with the observations. -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances. -
Ternary Solubility Diagrams at 270&Nbsp
Fluid Phase Equilibria 437 (2017) 1e13 Contents lists available at ScienceDirect Fluid Phase Equilibria journal homepage: www.elsevier.com/locate/fluid 2þ 2þ Partitioning of Co and Mn into meridianiite (MgSO4$11H 2O): Ternary solubility diagrams at 270 K; cation site distribution determined by single-crystal time-of-flight neutron diffraction and density functional theory * A.D. Fortes a, b, c, , I.G. Wood b, K.A. Hudson-Edwards c, M.J. Gutmann a a ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire, OX11 0QX, UK b Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK c Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK article info abstract 2þ Article history: We have grown single crystals of M SO4 hydrates at 270 K from aqueous solutions in the ternary Received 14 October 2016 systems CoSO4eMgSO4eH2O and MnSO4eMgSO4eH2O. These systems exhibit broad stability fields for a Received in revised form triclinic undecahydrate on the Mg-rich side (i.e., Co- or Mn-bearing meridianiite solid solutions) and 2 January 2017 stability fields for monoclinic heptahydrates on the Mg-poor side (i.e., Mg-bearing solid solutions of Accepted 8 January 2017 bieberite or mallardite). The solubility curves and distribution coefficients, describing the partitioning of Available online 9 January 2017 þ M2 ions between liquid and solid phases, have been determined by thermo-gravimetric and spectro- þ scopic techniques. A subset of M2 SO $11H O specimens were selected for single-crystal time-of-flight Keywords: 4 2 Meridianiite neutron diffraction analysis in order to evaluate preferential occupancy of symmetry-inequivalent co- fi Epsomite ordination polyhedra in the structure. -
Phase Transition Pathways of the Hydrates of Magnesium Sulfate in the Temperature Range 50°Cto5°C: Implication for Sulfates on Mars Alian Wang,1 John J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, E04010, doi:10.1029/2008JE003266, 2009 Click Here for Full Article Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50°Cto5°C: Implication for sulfates on Mars Alian Wang,1 John J. Freeman,1 and Bradley L. Jolliff1 Received 19 September 2008; revised 5 December 2008; accepted 5 January 2009; published 25 April 2009. [1] Dehydration/rehydration experiments were conducted on pure Mg-sulfates and mixtures of epsomite with Ca-sulfates, Fe-sulfates, Fe-oxide, and Fe-hydroxide. The goal was to investigate the stabilities and phase transition pathways of Mg-sulfate hydrates, under temperature and relative humidity conditions relevant to Mars, as a function of starting structure and coexisting species. Two pathways were found to form Mg-sulfate monohydrates between 5°C and 50°C through dehydration of epsomite or hexahydrite. Two polymorphs of Mg-sulfate monohydrates were characterized in this study. It is important to distinguish among these phases on Mars because they have different formation conditions that have the potential to provide additional information on surface and subsurface geologic processes. We found that Mg-sulfates with moderate hydration states (especially starkeyite and amorphous Mg-sulfates) can be very stable under current Martian surface conditions. On the basis of NIR spectral features, these phases are good candidates for polyhydrated sulfates identified on Mars by OMEGA and CRISM; thus, they may contribute to the high hydrogen concentrations found by the neutron spectrometer on the orbiting Odyssey spacecraft. Our experiments indicate that the maximum number of water molecules per SO4 held by the amorphous Mg-sulfate structure is three. -
Sc,Ti,Al,Zr,Mg,Ca,□)2O3, a NEW ULTRA-REFRACTORY MINERAL in ALLENDE Chi Ma1*, Oliver Tschauner1,2, John R
75th Annual Meteoritical Society Meeting (2012) 5004.pdf DISCOVERY OF KANGITE, (Sc,Ti,Al,Zr,Mg,Ca,□)2O3, A NEW ULTRA-REFRACTORY MINERAL IN ALLENDE Chi Ma1*, Oliver Tschauner1,2, John R. Beckett1, George R. Rossman1, Wenjun Liu3. 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; 2High Pressure Science and Engineering Center and Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; 3Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA. *[email protected] Introduction: During a nano-mineralogy investigation of the Allende CV3 carbonaceous chondrite, we identified a new scan- dia mineral named “kangite” in an irregular ultra-refractory in- clusion. It has a cubic Ia3 bixbyite-type structure and a formula unit (Sc,Ti,Al,Zr,Mg,Ca,□)2O3. Field-emission SEM with EDS and electron back-scatter diffraction, electron microprobe and synchrotron micro-Laue diffraction were used to characterize the composition and structure. We report here the first occurrence of kangite in nature, as a new ultra-refractory oxide among the ear- liest solids formed in the solar nebula, and discuss its origin and significance for nebular processes. The mineral and the mineral name (kangite) have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2011-092). Occurrence, Chemistry, and Crystallography: Kangite (26.6 wt% Sc2O3) appears as four irregular to subhedral grains, 1 to 4 μm in size, alone or in contact with REE-rich perovskite and MgAl-spinel in type davisite (up to 17.7 wt% Sc2O3) [1]. -
Chapter5 Crystallization and Characterization of a New
Propositions accompanying the thesis of F. Elif Genceli Scaling-Up Eutectic Freeze Crystallization 1. In heat flow calculations of crystallization on a cold surface [Pronk, P. et al.; Chemical Engineering Science, 2006, 61, p.4354-4362; Mershmann, A.; Crystallization Technology Handbook, 2001], it is frequently assumed that all heat of crystallization is transferred to the cold side which is not necessarily true (Chapter 7). 2. The Raman spectra presented in the work of Freeman et al. [Freeman J.J.; Wang, A.; Jolliff B.L.; 38th Lunar and Planetary Science Conference, 2007, No. 1338, p.1197] are not those of MgSO4.11H2O (Meridianiite) as they claim, but are spectra of crystal samples which have already been dehydrated into a magnesium sulfate with a lower hydrate content (Chapter 5-6). 3. It is surprising that no care was ever given since 1837 [Fritzsche, C.J.; Poggendorff’s Annalen, 1837, 42, 577-580] to determine the exact phase diagram of MgSO4 aqueous solution nor to determining the crystal structure of the magnesium sulfate phase formed at lower temperatures, despite the fact that the solution has been used in many crystallization applications as the model solution. [e.g.: Hogenboom, D.L.; Kargel, J.S.; Ganasan, J.P.; Lee, L.; Icarus. 1995, 115, 258-277] (Chapter 5). 4. It is easier to make nano-crystals from supercritical CO2 [Jung, J.; Perrut, M.; J. Supercrit. Fluids, 2001, 20, 3, 179-219] than by arrested precipitation from solution. 5. Putting CO2 underground is not a sustainable solution to our energy problem. 6. It is surprising, even paradoxical, that results in highly prestigious journals are not necessarily more reliable than those in second-tier journals.