Natural Resource Condition Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Natural Resource Condition Assessment National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Sunset Crater Volcano National Monument Natural Resource Condition Assessment Natural Resource Report NPS/SCPN/NRR—2018/1837 ON THIS PAGE Desert globemallow. Photo Credit: NPS ON THE COVER A view of yellow sunflowers with Sunset Crater Volcano in the background. Photo Credit: NPS Sunset Crater Volcano National Monument Natural Resource Condition Assessment Natural Resource Report NPS/SCPN/NRR—2018/1837 Author Name(s) Lisa Baril1, Patricia Valentine-Darby1, Kimberly Struthers1, Paul Whitefield2 , Kirk Anderson3, Mark Brunson1 1Utah State University Department of Environment and Society Logan, Utah 2National Park Service Flagstaff Area National Monuments Flagstaff, Arizona 3Museum of Northern Arizona Flagstaff, Arizona Editing and Design Kimberly Struthers1 December 2018 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review, which was provided by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. The level and extent of peer review was based on the importance of report content or its potentially controversial or precedent-setting nature. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from the Natural Resource Condition Assessment Program website and the Natural Resource Publications Management website. If you have difficulty accessing information in this publication, particularly if using assistive technology, please email [email protected]. Please cite this publication as: Baril, L., P. L. Valentine-Darby, K. Struthers, P. Whitefield, K. Anderson, and M. Brunson. 2018. Sunset Crater Volcano National Monument: Natural resource condition assessment. Natural Resource Report NPS/ SCPN/NRR—2018/1837. National Park Service, Fort Collins, Colorado. NPS 039/149831, December 2018 ii Contents Page Figures ................................................................................................................................................... vi Tables .................................................................................................................................................... x Appendices .................................................................................................................................................. xii Executive Summary ..................................................................................................................................... xiii Acknowledgements .....................................................................................................................................xiv Chapter 1. NRCA Background Information ................................................................................................. 1 Chapter 2. Introduction and Resource Setting ............................................................................................ 4 2.1. Introduction ........................................................................................................................................................ 4 2.1.1. Enabling Legislation/Executive Orders ............................................................................................................................ 4 2.1.2. Geographic Setting ....................................................................................................................................................... 5 2.1.3. Visitation Statistics ........................................................................................................................................................ 6 2.2. Natural Resources ............................................................................................................................................... 6 2.2.1. Ecological Units, Watersheds, and NPScape Landscape-scale ......................................................................................... 6 2.2.2. Resource Descriptions ................................................................................................................................................... 9 2.2.3. Resource Issues Overview ........................................................................................................................................... 11 2.3. Resource Stewardship ...................................................................................................................................... 12 2.3.1. Management Directives and Planning Guidance .......................................................................................................... 12 2.3.2. Status of Supporting Science ...................................................................................................................................... 14 Chapter 3. Study Scoping and Design ....................................................................................................... 15 3.1. Preliminary Scoping ......................................................................................................................................... 15 3.2. Study Design ..................................................................................................................................................... 16 3.2.1. Indicator Framework, Focal Study Resources and Indicators ......................................................................................... 16 3.2.2. Reporting Areas .......................................................................................................................................................... 17 3.2.3. General Approach and Methods ................................................................................................................................. 17 Chapter 4. Natural Resource Conditions ................................................................................................... 21 4.1. Viewshed ........................................................................................................................................................... 22 4.1.1. Background and Importance ....................................................................................................................................... 22 4.1.2. Data and Methods ...................................................................................................................................................... 23 4.1.3. Reference Conditions .................................................................................................................................................. 29 4.1.4. Condition and Trend ................................................................................................................................................... 29 4.1.5. Sources of Expertise .................................................................................................................................................... 37 4.2. Night Sky ........................................................................................................................................................... 38 4.2.1. Background and Importance ....................................................................................................................................... 38 4.2.2. Data and Methods ...................................................................................................................................................... 39 4.2.3. Reference Conditions .................................................................................................................................................. 41 4.2.4. Condition and Trend ................................................................................................................................................... 44 4.2.5. Sources of Expertise ...................................................................................................................................................
Recommended publications
  • Hydrothermal Alteration, Fumarolic Deposits and Fluids from Lastarria Volcanic Complex: a Multidisciplinary Study
    Andean Geology 42 (3): 166-196. May, 2016 Andean Geology doi: 10.5027/andgeoV43n2-a02 www.andeangeology.cl Hydrothermal alteration, fumarolic deposits and fluids from Lastarria Volcanic Complex: A multidisciplinary study *Felipe Aguilera1, Susana Layana2, Augusto Rodríguez-Díaz3, Cristóbal González2, Julio Cortés4, Manuel Inostroza2 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 2 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected]; [email protected]; [email protected] 3 Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04150 México D.F., México. [email protected] 4 Consultor Independiente, Las Docas 4420, La Serena, Chile. [email protected] * Corresponding Author: [email protected] ABSTRACT. A multidisciplinary study that includes processing of Landsat ETM+ satellite images, chemistry of gas condensed, mineralogy and chemistry of fumarolic deposits, and fluid inclusion data from native sulphur deposits, has been carried out in the Lastarria Volcanic Complex (LVC) with the objective to determine the distribution and charac- teristics of hydrothermal alteration zones and to establish the relations between gas chemistry and fumarolic deposits. Satellite image processing shows the presence of four hydrothermal alteration zones, characterized by a mineral
    [Show full text]
  • No Change in the Recent Lunar Impact Flux Required Based On
    Geophysical Research Letters RESEARCH LETTER No Change in the Recent Lunar Impact Flux Required Based 10.1029/2018GL077254 on Modeling of Impact Glass Spherule Age Distributions Key Points: • An excess of young lunar impact glass Ya-Huei Huang1 , David A. Minton1, Nicolle E. B. Zellner2 , Masatoshi Hirabayashi3 , spherules <500 Ma likely results from 4 5 limited sampling depths where lunar James E. Richardson , and Caleb I. Fassett soils were collected • Sampling biases can explain the 1Department of Earth, Atmospheric, and Planetary Science, Purdue University, West Lafayette, IN, USA, 2Department of excess of young spherules, rather than Physics, Albion College, Albion, MI, USA, 3Department of Aerospace Engineering, Auburn University, Auburn, AL, USA, a significant change in the impact flux 4Planetary Science Institute, Tucson, AZ, USA, 5NASA Marshall Space Flight Center, Huntsville, AL, USA in the last 500 Ma • Using lunar impact glass spherule ages to constrain the impact flux may 40 39 be less biased if collected beyond the Abstract The distributions of Ar/ Ar-derived ages of impact glass spherules in lunar regolith uppermost lunar surface samples show an excess at <500 Ma relative to older ages. It has not been well understood whether this excess of young ages reflects an increase in the recent lunar impact flux or is due to a bias in the samples. Supporting Information: We developed a model to simulate the production, transport, destruction, and sampling of lunar glass • Supporting Information S1 spherules. A modeled bias is seen when either (1) the simulated sampling depth is 10 cm, consistent with the typical depth from which Apollo soil samples were taken, or (2) when glass occurrence in the ejecta is > Correspondence to: limited to 10 crater radii from the crater, consistent with terrestrial microtektite observations.
    [Show full text]
  • Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Hog Heaven Mining District, Flathead County, Montana
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2020 MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA Ian Kallio Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geological Engineering Commons MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA by Ian Kallio A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Geoscience Geology Option Montana Tech 2020 ii Abstract The Hog Heaven mining district in northwestern Montana is unique in that it is a high- sulfidation epithermal system containing high Ag-Pb-Zn relative to Au-Cu, with a very high Ag to Au ratio (2,330:1). The deposits are hosted within the Cenozoic Hog Heaven volcanic field (HHVF), a 30 to 36 Ma suite that consists predominantly of rhyodacite flow-dome complexes and pyroclastic rocks. The HHVF is underlain by shallow-dipping siliclastic sediments of the Mesoproterozoic Belt Supergroup. These sediments are known to host important SEDEX (e.g., Sullivan) and red-bed copper (e.g., Spar Lake, Rock Creek, Montanore) deposits rich in Ag-Pb- Zn-Cu-Ba. The HHVF erupted through and deposited on the Belt strata during a period of Oligocene extension. Outcrops and drill core samples from Hog Heaven show alteration patterns characteristic of volcanic-hosted, high-sulfidation epithermal deposits. Vuggy quartz transitions laterally into quartz-alunite alteration where large sanidine phenocrysts (up to 4 cm) have been replaced by fine-grained, pink alunite, and/or argillic alteration that is marked by an abundance of white kaolinite-dickite clay.
    [Show full text]
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Land Areas of the National Forest System, As of September 30, 2019
    United States Department of Agriculture Land Areas of the National Forest System As of September 30, 2019 Forest Service WO Lands FS-383 November 2019 Metric Equivalents When you know: Multiply by: To fnd: Inches (in) 2.54 Centimeters Feet (ft) 0.305 Meters Miles (mi) 1.609 Kilometers Acres (ac) 0.405 Hectares Square feet (ft2) 0.0929 Square meters Yards (yd) 0.914 Meters Square miles (mi2) 2.59 Square kilometers Pounds (lb) 0.454 Kilograms United States Department of Agriculture Forest Service Land Areas of the WO, Lands National Forest FS-383 System November 2019 As of September 30, 2019 Published by: USDA Forest Service 1400 Independence Ave., SW Washington, DC 20250-0003 Website: https://www.fs.fed.us/land/staff/lar-index.shtml Cover Photo: Mt. Hood, Mt. Hood National Forest, Oregon Courtesy of: Susan Ruzicka USDA Forest Service WO Lands and Realty Management Statistics are current as of: 10/17/2019 The National Forest System (NFS) is comprised of: 154 National Forests 58 Purchase Units 20 National Grasslands 7 Land Utilization Projects 17 Research and Experimental Areas 28 Other Areas NFS lands are found in 43 States as well as Puerto Rico and the Virgin Islands. TOTAL NFS ACRES = 192,994,068 NFS lands are organized into: 9 Forest Service Regions 112 Administrative Forest or Forest-level units 503 Ranger District or District-level units The Forest Service administers 149 Wild and Scenic Rivers in 23 States and 456 National Wilderness Areas in 39 States. The Forest Service also administers several other types of nationally designated
    [Show full text]
  • The Paleoecology and Fire History from Crater Lake
    THE PALEOECOLOGY AND FIRE HISTORY FROM CRATER LAKE, COLORADO: THE LAST 1000 YEARS By Charles T. Mogen A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science and Policy Northern Arizona University August 2018 Approved: R. Scott Anderson, Ph.D., Chair Nicholas P. McKay, Ph.D. Darrell S. Kaufman, Ph.D. Abstract High-resolution pollen, plant macrofossil, charcoal and pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) records were developed from a 154 cm long sediment core collected from Crater Lake (37.39°N, 106.70°W; 3328 m asl), San Juan Mountains, Colorado. Several studies have explored Holocene paleo-vegetation and fire histories from mixed conifer and subalpine bogs and lakes in the San Juan and southern Rocky Mountains utilizing both palynological and charcoal studies, but most have been at relatively low resolution. In addition to presenting the highest resolution palynological study over the last 1000 years from the southern Rocky Mountains, this thesis also presents the first high-resolution pyrogenic PAH and charcoal paired analysis aimed at understanding both long-term fire history and the unresolved relationship between how each of these proxies depict paleofire events. Pollen assemblages, pollen ratios, and paleofire activity, indicated by charcoal and pyrogenic PAH records, were used to infer past climatic conditions. Although the ecosystem surrounding Crater Lake has remained a largely spruce (Picea) dominated forest, the proxies developed in this thesis suggest there were two distinct climate intervals between ~1035 to ~1350 CE and ~1350 to ~1850 CE in the southern Rocky Mountains, associated with the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) respectively.
    [Show full text]
  • VGP) Version 2/5/2009
    Vessel General Permit (VGP) Version 2/5/2009 United States Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) VESSEL GENERAL PERMIT FOR DISCHARGES INCIDENTAL TO THE NORMAL OPERATION OF VESSELS (VGP) AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM In compliance with the provisions of the Clean Water Act (CWA), as amended (33 U.S.C. 1251 et seq.), any owner or operator of a vessel being operated in a capacity as a means of transportation who: • Is eligible for permit coverage under Part 1.2; • If required by Part 1.5.1, submits a complete and accurate Notice of Intent (NOI) is authorized to discharge in accordance with the requirements of this permit. General effluent limits for all eligible vessels are given in Part 2. Further vessel class or type specific requirements are given in Part 5 for select vessels and apply in addition to any general effluent limits in Part 2. Specific requirements that apply in individual States and Indian Country Lands are found in Part 6. Definitions of permit-specific terms used in this permit are provided in Appendix A. This permit becomes effective on December 19, 2008 for all jurisdictions except Alaska and Hawaii. This permit and the authorization to discharge expire at midnight, December 19, 2013 i Vessel General Permit (VGP) Version 2/5/2009 Signed and issued this 18th day of December, 2008 William K. Honker, Acting Director Robert W. Varney, Water Quality Protection Division, EPA Region Regional Administrator, EPA Region 1 6 Signed and issued this 18th day of December, 2008 Signed and issued this 18th day of December, Barbara A.
    [Show full text]
  • 2021 Transpacific Yacht Race Event Program
    TRANSPACTHE FIFTY-FIRST RACE FROM LOS ANGELES 2021 TO HONOLULU 2 0 21 JULY 13-30, 2021 Comanche: © Sharon Green / Ultimate Sailing COMANCHE Taxi Dancer: © Ronnie Simpson / Ultimate Sailing • Hamachi: © Team Hamachi HAMACHI 2019 FIRST TO FINISH Official race guide - $5.00 2019 OVERALL CORRECTED TIME WINNER P: 808.845.6465 [email protected] F: 808.841.6610 OFFICIAL HANDBOOK OF THE 51ST TRANSPACIFIC YACHT RACE The Transpac 2021 Official Race Handbook is published for the Honolulu Committee of the Transpacific Yacht Club by Roth Communications, 2040 Alewa Drive, Honolulu, HI 96817 USA (808) 595-4124 [email protected] Publisher .............................................Michael J. Roth Roth Communications Editor .............................................. Ray Pendleton, Kim Ickler Contributing Writers .................... Dobbs Davis, Stan Honey, Ray Pendleton Contributing Photographers ...... Sharon Green/ultimatesailingcom, Ronnie Simpson/ultimatesailing.com, Todd Rasmussen, Betsy Crowfoot Senescu/ultimatesailing.com, Walter Cooper/ ultimatesailing.com, Lauren Easley - Leialoha Creative, Joyce Riley, Geri Conser, Emma Deardorff, Rachel Rosales, Phil Uhl, David Livingston, Pam Davis, Brian Farr Designer ........................................ Leslie Johnson Design On the Cover: CONTENTS Taxi Dancer R/P 70 Yabsley/Compton 2019 1st Div. 2 Sleds ET: 8:06:43:22 CT: 08:23:09:26 Schedule of Events . 3 Photo: Ronnie Simpson / ultimatesailing.com Welcome from the Governor of Hawaii . 8 Inset left: Welcome from the Mayor of Honolulu . 9 Comanche Verdier/VPLP 100 Jim Cooney & Samantha Grant Welcome from the Mayor of Long Beach . 9 2019 Barndoor Winner - First to Finish Overall: ET: 5:11:14:05 Welcome from the Transpacific Yacht Club Commodore . 10 Photo: Sharon Green / ultimatesailingcom Welcome from the Honolulu Committee Chair . 10 Inset right: Welcome from the Sponsoring Yacht Clubs .
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • BEYOND Alumni Share How the Gordon and Judy Dutile Honors Program Has Prepared Them for a Lifetime of Excellence
    A B O V E &BEYOND Alumni share how the Gordon and Judy Dutile Honors Program has prepared them for a lifetime of excellence INSIDE: 2015 PRESIDENT’S REPORT PB SBUlife Winter 2015 www.SBUniv.edu SBUlife 1 >> Be Social Read what students are sharing about SBU. sbu is the best; they brought We had a FANTASTIC visit day to- puppies to the union for us to play day with 90+ on campus! Thanks with #sbuniv for making the time to come! (via @elizaburris on Instagram) #futurebearcats #SBUniv @ SBU_Kim Awesome job @SBUbearcatsWBB!! We are so proud of you girls!! Great win!! #bearcatroar #SBUniv @Dewey_Dogger Love this university. Being sur- rounded by so many people who have a deep desire to serve Jesus is truly incredible. #SBUniv @sward2013 In honor of finals and first semester being over, #tbt to when we first became a family. #woodythird #woodygott #sbuniv (via @mary_rose_18 on Instagram) Good morning, SBU. #sbuniv #jantermsnotsobad #midwestisbest (via @courtney_kliment on Instagram) Check out “The Hub” – Southwest Baptist University’s social media mash-up site showcasing what people are saying about SBU online. Go to social.SBUniv.edu to see Facebook, Twitter, Instagram, YouTube and news release postings all in one place. And be sure to use #SBUniv when you post about SBU on social media and you may see your post featured on “The Hub” as well! Be social with SBU on Twitter, Facebook, 2 SBUlife Google+ and Instagram. #SBUniv Winter 2015 www.SBUniv.edu SBUlife 3 SBUlife Magazine of Southwest Baptist University Winter 2016 10th Anniversary of the Gordon and Judy Dutile Honors Program 2 5 Questions with Diana Gallamore 4 Guess Who? 22 SBU News 23 Keeping in Touch 24 Volume 101 Issue 1 ADDRESS CHANGE SBUlife highlights the University’s mission: to be USPS 507-500 POSTMASTER: Send address changes to a Christ-centered, caring academic community SBU 1600 University Avenue, preparing students to be servant leaders in a global PRESIDENT Bolivar, MO 65613-2597 society.
    [Show full text]
  • Discovering the Lost Race Story: Writing Science Fiction, Writing Temporality
    Discovering the Lost Race Story: Writing Science Fiction, Writing Temporality This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia 2008 Karen Peta Hall Bachelor of Arts (Honours) Discipline of English and Cultural Studies School of Social and Cultural Studies ii Abstract Genres are constituted, implicitly and explicitly, through their construction of the past. Genres continually reconstitute themselves, as authors, producers and, most importantly, readers situate texts in relation to one another; each text implies a reader who will locate the text on a spectrum of previously developed generic characteristics. Though science fiction appears to be a genre concerned with the future, I argue that the persistent presence of lost race stories – where the contemporary world and groups of people thought to exist only in the past intersect – in science fiction demonstrates that the past is crucial in the operation of the genre. By tracing the origins and evolution of the lost race story from late nineteenth-century novels through the early twentieth-century American pulp science fiction magazines to novel-length narratives, and narrative series, at the end of the twentieth century, this thesis shows how the consistent presence, and varied uses, of lost race stories in science fiction complicates previous critical narratives of the history and definitions of science fiction. In examining the implicit and explicit aspects of temporality and genre, this thesis works through close readings of exemplar texts as well as historicist, structural and theoretically informed readings. It focuses particularly on women writers, thus extending previous accounts of women’s participation in science fiction and demonstrating that gender inflects constructions of authority, genre and temporality.
    [Show full text]
  • Sunset Crater Volcano National Monument Foundation Document
    NATIONAL PARK SERVICE • U.S. DEPARTMENT OF THE INTERIOR Foundation Document Overview Sunset Crater Volcano National Monument Arizona Contact Information For more information about the Sunset Crater Volcano National Monument Foundation Document, contact: [email protected] or (928) 526-1157 or write to: Superintendent, Flagstaff Area National Monuments, 6400 N. Hwy 89, Flagstaff, AZ 86004 Purpose Significance Significance statements express why Sunset Crater Volcano National Monument resources and values are important enough to merit national park unit designation. Statements of significance describe why an area is important within a global, national, regional, and systemwide context. These statements are linked to the purpose of the park unit, and are supported by data, research, and consensus. Significance statements describe the distinctive nature of the park and inform management decisions, focusing efforts on preserving and protecting the most important resources and values of the park unit. • Most Recent Eruption. Erupting roughly 900 years ago, Sunset Crater Volcano is the youngest of 600 volcanoes within northern Arizona’s San Francisco Volcanic Field. • Geology. The monument’s display of plate tectonics, volcanism, and pristine eruption features provides excellent opportunities for science, education, and interpretation in the context of regional and global geology. • Community. This catastrophic event profoundly affected the life of people in the region and left a unique archeological and ethnographic record of human response, adaptation, and recovery. Sunset Crater Volcano and its impressive features continue to be significant to contemporary American Indian tribes. • Ecology. A 100-square-mile cinder and ash blanket smothered all life nearest the volcano, resulting in ecologic succession and a unique assemblage of plants in a largely barren landscape.
    [Show full text]