The Southern Hemisphere

Total Page:16

File Type:pdf, Size:1020Kb

The Southern Hemisphere R O T H N α Capella δ α PERSEUS β THE SOUTHERN HEMISPHERE Algol Almach T AURIGA S υ β E N γ W With Glenn Dawes O H R T M34 T R NGC 752 NGC H O Look out for the close encounter of Jupiter E A N California Nebula California M36 β S β T δ R ANDROMEDA and Saturn – known as the ‘Great Conjunction’ α γ Castor M37 δ β RW 13th Pollux β 1st α 31st When to use this chart ANDROMEDA 28th M33 Alpheratz M35 TRIANGULUM The chart accurately matches the sky on the 1 Nov at 00:00 AEDT (13:00 UT) α Pleiades Hamal GEMINI dates and times shown for Sydney, Australia. 15 Nov at 23:00 AEDT (12:00 UT) ε V β The sky is different at other times as the stars δ 4th δ 1 Aldebaran δ 30 Nov at 22:00 AEDT (11:00 UT) crossing it set four minutes earlier each night. γ α ARIES γ CANCER Hyades γ γ Ecliptic δ 25th PEGASUS ORION Bellatrix PISCES CANIS MINOR CANIS DECEMBER HIGHLIGHTS STARS AND CONSTELLATIONS Pegasus X PEGASUS 31st Betelgeuse α γ December brings a ‘Great Conjunction’ When looking at a star you might Beehive M44 Great Square of Square Great γ Uranus β Alnilam Mars γ Menkar between Jupiter and Saturn. You wonder if it’s bright only because it TAURUS 1st α W δ α β γ may have noticed them drawing closer, is close to us. That is true for some, but Rosette M78 Procyon Alrescha α δ β but on the 21st Jupiter overtakes Saturn certainly not the brightest luminaries in α δ δ δ LEO M43 and is just 0.1˚ distant. If you wish to view Orion. Rigel (beta (b)), Bellatrix (gamma (g)) Mira δ M50 γ both in the same eyepiece, they are within and Alnilam (epsilon ( ) Orionis), the centre Winter Triangle e M42 β β Rigel Equator Celestial 0.5˚ between the 17th and 26th. Although Belt star are all blue/white supergiants with Sirius CETUS α low in the twilight sky, around 40 minutes masses and temperatures and luminosities γ α CANIS MAJOR CANIS M48 Circlet α after sunset the planets should still have an that dwarf our Sun. Betelgeuse (alpha (a) MONOCEROS 22nd Alphard γ β γ δ β altitude of about 15° from mid-Australian Orionis) is a red supergiant that is half as β M47 γ latitudes. On the 17th a thin crescent Moon hot as the Sun, but if it replaced our star its HYDRA M41 LEPUS E δ can be seen 3˚ above the pair. surface would extend past the orbit of Mars. T A ERIDANUS β S Neptune α E S PUPPIS T α W γ THE PLANETS β δ γ β 253 NGC Ghost of Jupiter of Ghost CAELUM δ COLUMBA HOROLOGIUM Jupiter and Saturn will be low in the setting in the early morning. They are α α AQUARIUS γ α Kaitos Deneb western twilight sky by the month’s best observed in the evening. Venus Canopus α end and soon lost in the Sun’s glow. remains the Morning Star and is dropping PYXIS 300 NGC DORADO β γ α γ Neptune is now in the northwest evening towards the Sun. On the morning of the β R δ α δ sky, departing around midnight. Mars and 13th, Venus has a close meeting with the γ γ PHOENIX PICTOR CARINA δ α EQUULEUS SCULPTOR Uranus follow Neptune across the sky, crescent Moon in the eastern dawn sky. ε δ β δ β RETICULUMα CRATER Helix α ANTLIA γ Fomalhaut α γ VELA β α δ NGC 1466 β α Achernar β DEEP-SKY OBJECTS δ α ζ γ α The Pleiades open star cluster, M45, eclipsing binary type. Earth happens to be Tarantulaδ NebulaLMC β β β in Taurus (RA 3h 47.0m, dec. +24° 07’) in the plane of this binary pair’s orbit, so δ β γ γ β contains many double stars, some well we see a regular dimming as the fainter α SMC γ PISCIS R NGC 362 suited for binoculars such as Atlas (27 star passes in front of its brighter α VOLANS MENSA HYDRUS γ AUSTRINUS β α CHAMAELEON Tauri) and Pleione (28 Tauri) at mag. +3.6 companion. RW Tauri spends most of the β GRUS 47 Tucanae S β δ and mag. +5.1 and 5 arcminutes apart, time at 8th magnitude. Every 2.769 days it and 21 and 22 Tauri, at mag. +5.8 and dims to 12th magnitude and then recovers, Gem Cluster TUCANA γ γ mag. +6.4 separated by 3 arcminutes. taking eight hours – a close orbit. Charts South Celestial Pole Southern Pleiades α δ β δ α δ with comparison star magnitudes can be β RW Tauri (RA 4h 03.9m, dec. +28° 07’) downloaded from the American γ β is an impressive variable star of the Association of Variable Stars (AAVSO). Acrux γ INDUS S α δ OCTANS O Blue Planetaryδ Nebula δ MUSCA T α α S U δ γ E T CRUX γ PAVO H β β W E Coal Sack δ β H A β T Chart key S β APUS U T γ Jewel Box δ O S STAR α α ASTEROID GALAXY DIFFUSE BRIGHTNESS: γ TRIANGULUMAUSTRALE CENTAURUS TRACK MAG. 0 NEBULOSITY & BRIGHTER α α OPEN CLUSTER β CIRCINUS METEOR DOUBLE STAR MAG. +1 Rigel Kent GLOBULAR RADIANT MAG. +2 CLUSTER VARIABLE STAR QUASAR MAG. +3 α β δ PLANETARY MAG. +4 CORONAAUSTRALIS NEBULA COMET TRACK PLANET δ & FAINTER β γ CHART: PETECHART: LAWRENCE ARA BBC Sky at Night Magazine December 2020 SOUTH BBC Sky at Night Magazine December 2020.
Recommended publications
  • Modeling of PMS Ae/Fe Stars Using UV Spectra,
    A&A 456, 1045–1068 (2006) Astronomy DOI: 10.1051/0004-6361:20040269 & c ESO 2006 Astrophysics Modeling of PMS Ae/Fe stars using UV spectra, P. F. C. Blondel1,2 andH.R.E.TjinADjie1 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands e-mail: [email protected] 2 SARA, Kruislaan 415, 1098 SJ Amsterdam, The Netherlands Received 13 February 2004 / Accepted 13 October 2005 ABSTRACT Context. Spectral classification of PMS Ae/Fe stars, based on visual observations, may lead to ambiguous conclusions. Aims. We aim to reduce these ambiguities by using UV spectra for the classification of these stars, because the rise of the continuum in the UV is highly sensitive to the stellar spectral type of A/F-type stars. Methods. We analyse the low-resolution UV spectra in terms of a 3-component model, that consists of spectra of a central star, of an optically-thick accretion disc, and of a boundary-layer between the disc and star. The disc-component was calculated as a juxtaposition of Planck spectra, while the 2 other components were simulated by the low-resolution UV spectra of well-classified standard stars (taken from the IUE spectral atlases). The hot boundary-layer shows strong similarities to the spectra of late-B type supergiants (see Appendix A). Results. We modeled the low-resolution UV spectra of 37 PMS Ae/Fe stars. Each spectral match provides 8 model parameters: spectral type and luminosity-class of photosphere and boundary-layer, temperature and width of the boundary-layer, disc-inclination and circumstellar extinction.
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre
    STARDUST Newsletter of the Royal Astronomical Society of Canada Edmonton Centre January 2009 Volume 54 Issue 5 A crescent Moon is distorted by atmospheric refraction on the morning of December 24, 2008. Photo by Alister Ling, Canon 10D with 300mm telephoto. Inside this Issue Contact Information................................................................................................................................................page 2 Upcoming Events, Meetings, Deadlines, Announcements.....................................................................................page 3 Observers Report.....................................................................................................................................................page 3 Blotting Out Star Light...........................................................................................................................................page 3 Crescents and Full Moon Photo-Ops......................................................................................................................page 4 Coronado PST.........................................................................................................................................................page 5 President's Report....................................................................................................................................................page 6 Lights Down, Stars Up............................................................................................................................................page
    [Show full text]
  • Binocular Challenges
    This page intentionally left blank Cosmic Challenge Listing more than 500 sky targets, both near and far, in 187 challenges, this observing guide will test novice astronomers and advanced veterans alike. Its unique mix of Solar System and deep-sky targets will have observers hunting for the Apollo lunar landing sites, searching for satellites orbiting the outermost planets, and exploring hundreds of star clusters, nebulae, distant galaxies, and quasars. Each target object is accompanied by a rating indicating how difficult the object is to find, an in-depth visual description, an illustration showing how the object realistically looks, and a detailed finder chart to help you find each challenge quickly and effectively. The guide introduces objects often overlooked in other observing guides and features targets visible in a variety of conditions, from the inner city to the dark countryside. Challenges are provided for viewing by the naked eye, through binoculars, to the largest backyard telescopes. Philip S. Harrington is the author of eight previous books for the amateur astronomer, including Touring the Universe through Binoculars, Star Ware, and Star Watch. He is also a contributing editor for Astronomy magazine, where he has authored the magazine’s monthly “Binocular Universe” column and “Phil Harrington’s Challenge Objects,” a quarterly online column on Astronomy.com. He is an Adjunct Professor at Dowling College and Suffolk County Community College, New York, where he teaches courses in stellar and planetary astronomy. Cosmic Challenge The Ultimate Observing List for Amateurs PHILIP S. HARRINGTON CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao˜ Paulo, Delhi, Dubai, Tokyo, Mexico City Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521899369 C P.
    [Show full text]
  • Imaging Van Den Bergh Objects
    Deep-sky observing Explore the sky’s spooky reflection nebulae vdB 14 You’ll need a big scope and a dark sky to explore the van den Bergh catalog’s challenging objects. text and images by Thomas V. Davis vdB 15 eflection nebulae are the unsung sapphires of the sky. These vast R glowing regions represent clouds of dust and cold hydrogen scattered throughout the Milky Way. Reflection nebulae mainly glow with subtle blue light because of scattering — the prin- ciple that gives us our blue daytime sky. Unlike the better-known red emission nebulae, stars associated with reflection nebulae are not near enough or hot enough to cause the nebula’s gas to ion- ize. Ionization is what gives hydrogen that characteristic red color. The star in a reflection nebula merely illuminates sur- rounding dust and gas. Many catalogs containing bright emis- sion nebulae and fascinating planetary nebulae exist. Conversely, there’s only one major catalog of reflection nebulae. The Iris Nebula (NGC 7023) also carries the designation van den Bergh (vdB) 139. This beauti- ful, flower-like cloud of gas and dust sits in Cepheus. The author combined a total of 6 hours and 6 minutes of exposures to record the faint detail in this image. Reflections of starlight Canadian astronomer Sidney van den vdB 14 and vdB 15 in Camelopardalis are Bergh published a list of reflection nebu- so faint they essentially lie outside the lae in The Astronomical Journal in 1966. realm of visual observers. This LRGB image combines 330 minutes of unfiltered (L) His intent was to catalog “all BD and CD exposures, 70 minutes through red (R) and stars north of declination –33° which are blue (B) filters, and 60 minutes through a surrounded by reflection nebulosity …” green (G) filter.
    [Show full text]
  • 2011 Peeling the Onion & Binocular Asterisms
    The Eldorado Star Party 2011 Binocular and Telescope Observing Clubs by Blackie Bolduc San Antonio Astronomical Association Purpose and Rules Welcome to the Annual ESP Binocular and Telescope Clubs! Their purpose is to give you the opportunity to observe some Fall showcase objects under the pristine Southwest Texas skies, thus displaying them to their best advantage. Binocular Club. In response to many requests for “something different”, you are offered the opportunity to chase down some lovely asterisms. There is a listing of twenty-five objects, all observable with binoculars of modest dimension. While the location center of mass of each object is specified, some imagination on your part will be required in order to “see” the figure suggested. Most will pop out easily, but others may be elusive. If you get stumped, you can always consult the “cheat sheets” posted in the registration/warming tent on the observing field. You need only observe any 15, your choice. Telescope Club. Since most of the readily accessible objects have already been included in one or more of the annual listings since this Party got underway in 2004, it is time to try to spice up our challenges. This year we offer “Peeling the Onion”: beginning with a relatively easy to identify major object, then turning to a sub-object just a bit harder, and on to another sub-sub-object ... peeling them off one at a time. There are five major groups, with on “onion” at the head of each, and six to eleven “peels” in close order behind. Of a total of forty objects, you need only “find” 25, your choice.
    [Show full text]
  • Space Traveler 1St Wikibook!
    Space Traveler 1st WikiBook! PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Fri, 25 Jan 2013 01:31:25 UTC Contents Articles Centaurus A 1 Andromeda Galaxy 7 Pleiades 20 Orion (constellation) 26 Orion Nebula 37 Eta Carinae 47 Comet Hale–Bopp 55 Alvarez hypothesis 64 References Article Sources and Contributors 67 Image Sources, Licenses and Contributors 69 Article Licenses License 71 Centaurus A 1 Centaurus A Centaurus A Centaurus A (NGC 5128) Observation data (J2000 epoch) Constellation Centaurus [1] Right ascension 13h 25m 27.6s [1] Declination -43° 01′ 09″ [1] Redshift 547 ± 5 km/s [2][1][3][4][5] Distance 10-16 Mly (3-5 Mpc) [1] [6] Type S0 pec or Ep [1] Apparent dimensions (V) 25′.7 × 20′.0 [7][8] Apparent magnitude (V) 6.84 Notable features Unusual dust lane Other designations [1] [1] [1] [9] NGC 5128, Arp 153, PGC 46957, 4U 1322-42, Caldwell 77 Centaurus A (also known as NGC 5128 or Caldwell 77) is a prominent galaxy in the constellation of Centaurus. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type (lenticular galaxy or a giant elliptical galaxy)[6] and distance (10-16 million light-years).[2][1][3][4][5] NGC 5128 is one of the closest radio galaxies to Earth, so its active galactic nucleus has been extensively studied by professional astronomers.[10] The galaxy is also the fifth brightest in the sky,[10] making it an ideal amateur astronomy target,[11] although the galaxy is only visible from low northern latitudes and the southern hemisphere.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • Plêiades Pela Lua Em 28/ 09/91
    A Ocultação de M 45 - Plêiades Pela Lua em 28/ 09/91 Walter J. Maluf, Julio Cesar Lobo ABSTRACT 2. OBSERVAÇÃO OCCULTATION OF THE PLEIADES A observação visual da ocultação foi BY THE MOON IN SEPT. 28, 1991, by Walter J. Maluf: realizada na Estação Padrão USNO SJ 302, localizada Just before dawn of Sept. 28, 1991, the author has na cidade de Monte Mor/SP com as seguintes observed and timed the disappearance and timed the coordenadas: disappearance and reappearance of several Pleiades Longitude: 47º19’07.47" WG stars. Results are then compared with USNO’s Latitude: 22º57’0.97" S predictions. Altitude: 532.50 metros 1. INTRODUÇÃO Aproximadamente há uma hora do Na madrugada de 28 de setembro de evento, dirigi-me ao posto de observação com todo o 91, entre 06h38' (TU) e 08h44' (TU), a Lua ocultou as equipamento habitual e necessário para registrar a estrelas que compõe o aglomerado aberto M45 - ocultação. Posicionei o telescópio refrator na linha Sul- Plêiades. Esse aglomerado possui cerca de 250 estrelas Norte, aferi o cronômetro pelo pulso horário fornecido e apenas 7 delas são observáveis à vista desarmada e, pela Radio Relógio Federal do Rio de Janeiro, ondas situa-se aproximadamente a 450 anos-luz de distância. curtas, 580 e 4905 Khz, com pulsos nos segundos 58, 59 São estrelas jovens gigantes azuis e as mais brilhantes e 60 de cada minuto. são: Alcyone (Eta Tauri), Celaeno (16 Tauri), Electra Utilizei uma carta lunar com ângulos de (17 Tauri), Taygeta (19 Tauri), Astérope (21 Tauri), Maia WATT para acompanhar as ocultações, fichas de (20 Tauri), Mérope (23 Tauri), Atlas (27 Tauri) e Pleione reportes p/ ILOC, LIADA e REA; lanterna de luz (BU Tauri).
    [Show full text]
  • Interstellarum 56 • Februar/März 2008 1 Inhalt
    Editorial fokussiert Liebe Leserinnen und Leser, rückblickend gesehen war das Jahr 2007 astronomisch überaus in- teressant: Neben einer Mondfi nsternis und gleich vier Planetenbede- ckungen kam es auch zu zahlreichen Bedeckungen der Plejaden durch den Mond. Am stärksten in Erinnerung bleiben wird 2007 jedoch we- gen des ungewöhnlichen Auftritts von Komet Holmes, der im Okto- ber alle überraschte und bis Jahresende ein beeindruckendes Objekt – selbst mit dem bloßen Auge – blieb. Die Erinnerungen an diesen Schweifstern haben zahlreiche Leser im Bild festgehalten, in diesem Heft fi nden Sie eine Zusammenstellung der schönsten Motive (Seite 39). Welche astronomischen Leckerbissen das neue Jahr bereit hält, können Sie unserem Jahrbuch »Das Astronomische Jahr 2008« entnehmen, das Ronald Stoyan, Chefredakteur ich Ihnen wärmstens empfehlen möchte. Als wir vor einem Jahr zum Jubiläum des 50. interstellarum-Heftes zum Wettbewerb um die Fotografi e der schmalsten Mondsichel aufrie- fen, hoff ten wir auf schöne Ergebnisse. Doch dass sich unter den ein- gesandten Bildern sogar eine Weltrekord-Aufnahme der schmalsten jemals von Menschen dokumentierten Mondsichel fi nden würde, über- traf bei weitem unsere Erwartungen. Bei der Präsentation der Ergeb- nisse (Seite 34) lassen wir deshalb den Autor dieser Bilder ausführlich zu Wort kommen. Eine Auswahl aus den über 200 Einsendungen, für die wir uns bei jedem Teilnehmer sehr herzlich bedanken möchten, fi nden Sie im Internet unter www.interstellarum.de. Zwei weitere Veränderungen fi nden Sie in diesem Heft: Neu einge- führt haben wir als Reaktion auf die Zuschriften zu den letzten Hef- ten eine Galerie für besonders schöne Astro-Zeichnungen (Seite 71). Dort sollen nicht nur Deep-Sky-Zeichnungen wiedergegeben werden, sondern auch Motive aus dem Sonnensystem.
    [Show full text]
  • The X-Ray Puzzle of the L1551 IRS 5 Jet
    A&A 530, A123 (2011) Astronomy DOI: 10.1051/0004-6361/201016305 & c ESO 2011 Astrophysics The X-ray puzzle of the L1551 IRS 5 jet P. C. Schneider1, H. M. Günther2, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [cschneider;jschmitt]@hs.uni-hamburg.de 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA e-mail: [email protected] Received 13 December 2010 / Accepted 18 April 2011 ABSTRACT Protostars are actively accreting matter and they drive spectacular, dynamic outflows, which evolve on timescales of years. X-ray emission from these jets has been detected only in a few cases and little is known about its time evolution. We present a new Chandra observation of L1551 IRS 5’s jet in the context of all available X-ray data of this object. Specifically, we perform a spatially resolved spectral analysis of the X-ray emission and find that (a) the total X-ray luminosity is constant over almost one decade, (b) the majority of the X-rays appear to be always located close to the driving source, (c) there is a clear trend in the photon energy as a function of the distance to the driving source indicating that the plasma is cooler at larger distances and (d) the X-ray emission is located in a small volume which is unresolved perpendicular to the jet axis by Chandra. A comparison of our X-ray data of the L1551 IRS 5 jet both with models as well as X-ray observations of other protostellar jets shows that a base/standing shock is a likely and plausible explanation for the apparent constancy of the observed X-ray emission.
    [Show full text]
  • Low Mass Star Formation in the Taurus-Auriga Clouds
    Handbook of Star Forming Regions Vol. I Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Low Mass Star Formation in the Taurus-Auriga Clouds Scott J. Kenyon Smithsonian Astrophysical Observatory, 60 Garden Street Cambridge, MA 02138, USA Mercedes Gomez´ Observatorio Astronomico,´ Universidad Nacional de Cor´ doba Laprida 854, 5000 Cor´ doba, Argentina Barbara A. Whitney Space Science Institute, 4750 Walnut Street, Suite 205 Boulder, CO 80301, USA Abstract. We review the history and structure of star formation in the Taurus-Auriga dark clouds. Our discussion includes a summary of the macroscopic cloud properties, the population of single and binary pre-main sequence stars, the properties of jets and outflows, and detailed summaries of selected individual objects. We include compre- hensive tables of dark clouds, young stars, and jets in the clouds. 1. Overview In October 1852, J. R. Hind `noticed a very small nebulous looking object' roughly 1800 west of a tenth magnitude star in Taurus. Over the next 15 years, the nebula slowly faded in brightness and in 1868 vanished completely from the view of the largest tele- scopes. O. Struve then found a new, smaller and fainter, nebulosity roughly 40 west of Hind's nebula. While trying to recover these nebulae, Burnham (1890, 1894) discov- ered a small elliptical nebula surrounding T Tau (Figure 1). Spectra of Hind's nebula revealed emission from either Hβ or [O III] λ5007, demonstrating that the nebula was gaseous as in novae and planetary nebulae. At about the same time, Knott (1891) reported 4 magnitude variability in the `ruddy' star associated with these nebulae, T Tauri.
    [Show full text]