Book Chapter - Parsley
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside
Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside Nicole M. Broda Thesis Advisor: Robert Kuchta, Ph.D.: Department of Chemistry and Biochemistry Committee Members: Liu Xuedong, Ph.D.: Department of Chemistry and Biochemistry Levente Szentkirályi, Ph.D.: Program For Writing and Rhetoric Undergraduate Thesis March 23rd, 2018 University of Colorado at Boulder Department of Chemistry and Biochemistry Broda 2 Acknowledgements I am incredibly thankful for the mentorship and experience I have received from Robert Kuchta, who gave me the opportunity to be an undergraduate research assistant and supported me during numerous independent projects. Likewise, I want to extend my thanks to the other members of the Kuchta lab that have been crucial in my development as a researcher and in the intricacies of this thesis: Sarah Dickerson, for her guidance through the research process and creation of a friendly working environment; Ayman Alawneh, for his mentorship in the art of organic synthesis from the bottom-up and for answering my numerous questions about the theory behind it all; and Michelle Ledru, for sharing the long synthesis days and learning the process with me. Additionally, thank you to my honors committee members Liu Xuedong and Levente Szentkirályi for volunteering their time to participate in this undergraduate thesis defense. A special thanks to Levente Szentkirályi, for helping me through the thesis writing process from the draft to the final and for instilling in me the responsibility we as a scienctific community have to make science accessible to interdisciplinary readers and the general public. I extend my appreciation to Michael J. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
DEGRADATION of LIGNIN by OZONE by @ Reginald AD Mbachu
DEGRADATION OF LIGNIN BY OZONE by Reginald A.D. Mbachu, B.Sc. (Hons) @ (University of Nigeria, Nsukka) A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry, April 1979 McGill University, Montreal, P.Q. i ABSTRACT A physicochemical study of the mechanism of lignin degradation by ozone has been made using spruce periodate and cuoxam lignins and spruce wood protolignin. The ozonization was carried out'in 45% aqueous acetic acid. In all cases, degradation was found to follow first order kinetics indicating a similar reaction mechanism and a single rate controlling process. From the rate c~4stants obtained, it was concluded that the carbohyd rate moieties in wood do not affect the rate of protolignin degradation and dissolution. Spectroscopic studies of the alkali soluble degradation products of lignin showed that the chemical mechanism is probably electrophilic, involving the attack on phenol ether bonds, methoxyl groups, aromatic and other un saturated structures and the formation of carboxyl groups. De carboxylation occurs in the later stages of the reaction. From a consideration of the possible reactions that may degrade the lignin network, it was concluded that the observed phenol ether bond cleavage is the principal network-degrading reaction during ozonization. A tentative mechanism has, therefore, been proposed for the cleavage of the phenol ether bonds in lignin. Molecular weights and molecular weight distributions of the alkali-soluble degradation products, as studied by gel permeation chromatography and ultracentrifugation, indicate that a random heterolytic degradation mechanism is involved. -
Towards the Total Synthesis of Plumbagin
Synthetic Applications of the BHQ Reaction: Towards the Total Synthesis of Plumbagin A thesis submitted to the University of Manchester for the degree of Master of Philosophy in the Faculty of Engineering and Physical Sciences 2014 Michael Wong Supervisor: Dr. Peter Quayle School of Chemistry Table of Contents Abstract 4 Declaration 5 Copyright 6 Acknowledgements 7 Abbreviations 8 Section 1: Introduction 1.1 Plumbagin 9 1.2 Properties of Plumbagin 10 1.2.1 Anticancer Properties 10 1.2.2 Agricultural Applications 12 1.2.3 Anthelmintic Properties 13 1.3 Extraction Methods 14 1.4 Synthetic Routes to Plumbagin 16 1.5 Derivatisations 19 1.6 Atom Transfer Radical Cyclisations (ATRC’s) 23 1.7.1 The BHQ Reaction 24 1.7.2 Targeted Syntheses 27 1.8 Aims and Objectives 29 Section 2: Results and Discussion 2.1 Synthesis of Dimethyl Ether 39 30 2.2 Formylation of the Aromatic Ring 32 2.3 Dakin-West Oxidation 33 2.4 Preparation of the Allyl Phenyl Ether 35 2.5 The ortho-Claisen Rearrangement 36 2.6 Esterification 38 2.7 The BHQ Reaction 39 2.8 Oxidation of Dimethyl Ether 45 to Quinone 46 42 2.9 Displacement Reactions 43 2.10 Synthesis of Aryl Bromide 48 46 2.11 Lithium-Halogen Exchange 47 2.12 Final Steps to Plumbagin 50 Section 3: Conclusions and Further Work 56 Section 4: Experimental General Considerations 60 39 - 1-4-dimethoxy-2-methylbenzene 61 40 - 2,5-dimethoxy-4-methylbenzaldehyde 62 41 - 2,5-dimethoxy-4-methylphenol 63 42 - 1-(Allyloxy)-2,5-dimethoxy-4-methylbenzene 64 43 - 2-allyl-3,6-dimethoxy-4-methylphenol 65 44 - 2-allyl-3,6-dimethoxy-4-methylphenol-2,2,2-trichloroacetate -
Effects of Enzymatic and Thermal Processing on Flavones, the Effects of Flavones on Inflammatory Mediators in Vitro, and the Absorption of Flavones in Vivo
Effects of enzymatic and thermal processing on flavones, the effects of flavones on inflammatory mediators in vitro, and the absorption of flavones in vivo DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Louis Hostetler Graduate Program in Food Science and Technology The Ohio State University 2011 Dissertation Committee: Steven Schwartz, Advisor Andrea Doseff Erich Grotewold Sheryl Barringer Copyrighted by Gregory Louis Hostetler 2011 Abstract Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. Two studies were conducted to determine the effects of processing on stability and profiles of flavones in celery and parsley, and a third explored the effects of deglycosylation on the anti-inflammatory activity of flavones in vitro and their absorption in vivo. In the first processing study, celery leaves were combined with β-glucosidase-rich food ingredients (almond, flax seed, or chickpea flour) to determine test for enzymatic hydrolysis of flavone apiosylglucosides. Although all of the enzyme-rich ingredients could convert apigenin glucoside to aglycone, none had an effect on apigenin apiosylglucoside. Thermal stability of flavones from celery was also tested by isolating them and heating at 100 °C for up to 5 hours in pH 3, 5, or 7 buffer. Apigenin glucoside was most stable of the flavones tested, with minimal degradation regardless of pH or heating time. -
Bioactivity of Hydro-Alcoholic Extract of Petroselinum Crispum
9 Original Article Page 1 of 9 Bioactivity of hydro-alcoholic extract of Petroselinum crispum Stefania Lamponi^, Maria Camilla Baratto^ Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Siena, Italy Contributions: (I) Conception and design: S Lamponi; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: S Lamponi; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Stefania Lamponi. Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy. Email: [email protected]. Background: It is well known that the antioxidant and biological properties of plant extracts are due to their phytochemical composition and that phenolic compounds play an important role in the determination of extracts bioactivity. This study aimed to quantify the total phenolic content of an ethanolic extract obtained from Petroselinum crispum (P. crispum) leaves and to determine its in vitro bioactivity, both in non- cellular and cellular systems. Methods: The extract was obtained from fresh leaves of P. crispum using hydro-alcoholic solution of 60% ethanol as extraction solvent. The quantification of total phenol was performed by Fast Blue BB (FBBB) test. The DPPH antiradical and antioxidant activity in gallic acid equivalent (GAE) was determined by electron paramagnetic resonance (EPR). Hydrogen peroxide scavenging activity was determined both in non- cellular and cellular assay. Cytotoxicity of the extract towards NIH3T3 mouse fibroblasts and human breast adenocarcinoma cells MDA-MB-231 was evaluated by neutral red uptake (NRU), mutagenicity by Ames test and anticoagulant activity by thrombin time (TT). -
PARSLEY DOUBLE CURLED Petroselinum Crispum
PARSLEY DOUBLE CURLED Petroselinum crispum Characteristics • Type: Annual Herb • Bloom Time: Seasonal bloomer • Family: Apiaceae • Bloom Description: Greenish-yellow • Native Range: Greece, Yugoslavia • Sun: Full sun to part shade • Zone: 2 to 11 • Water: Medium Maintenance: Low • Height: 9”-12” • Attracts: Butterflies • Spread: 9”-12” • Flower: Showy Culture Parsley is a biennial. It is easily grown in average, consistently moist, well-drained soils in full sun to light shade. It prefers rich soils. Do not allow soils to dry out. Plants perform best in cool summer climates, and sometimes tend to languish in the hot and humid summers of the deep South. Starter plants may be planted 8-12" apart in the garden around the last spring frost date. Plants may also be grown from seed, but this is more difficult because germination is slow and usually uneven. Seed may be started indoors about 6-8 weeks before last spring frost date. Seed may also be started outdoors in the garden as of last spring frost date. Additional seed may be planted in the garden later in spring and in mid-summer. If desired, bring plants indoors in fall before first frost for overwintering. Place pots in a cool sunny window or under lights. Noteworthy Characteristics Petroselinum crispum is a culinary herb that is native to Europe and the Mediterranean. It is now grown world-wide for its aromatic edible leaves which may be used fresh or dried in soups, salads and a wide variety of other food dishes. It is popularly used as a garnish. It typically grows in a clump to 12" tall and as wide. -
Download PDF Flyer
REVIEWS IN PHARMACEUTICAL & BIOMEDICAL ANALYSIS Editors: Constantinos K. Zacharis and Paraskevas D. Tzanavaras eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements. -
Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. -
Sustainable Sourcing : Markets for Certified Chinese
SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS In collaboration with SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS SUSTAINABLE SOURCING: MARKETS FOR CERTIFIED CHINESE MEDICINAL AND AROMATIC PLANTS Abstract for trade information services ID=43163 2016 SITC-292.4 SUS International Trade Centre (ITC) Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants. Geneva: ITC, 2016. xvi, 141 pages (Technical paper) Doc. No. SC-2016-5.E This study on the market potential of sustainably wild-collected botanical ingredients originating from the People’s Republic of China with fair and organic certifications provides an overview of current export trade in both wild-collected and cultivated botanical, algal and fungal ingredients from China, market segments such as the fair trade and organic sectors, and the market trends for certified ingredients. It also investigates which international standards would be the most appropriate and applicable to the special case of China in consideration of its biodiversity conservation efforts in traditional wild collection communities and regions, and includes bibliographical references (pp. 139–140). Descriptors: Medicinal Plants, Spices, Certification, Organic Products, Fair Trade, China, Market Research English For further information on this technical paper, contact Mr. Alexander Kasterine ([email protected]) The International Trade Centre (ITC) is the joint agency of the World Trade Organization and the United Nations. ITC, Palais des Nations, 1211 Geneva 10, Switzerland (www.intracen.org) Suggested citation: International Trade Centre (2016). Sustainable Sourcing: Markets for Certified Chinese Medicinal and Aromatic Plants, International Trade Centre, Geneva, Switzerland. This publication has been produced with the financial assistance of the European Union. -
Bioactive Properties and Phenolic Compound Profiles of Turnip
molecules Article Bioactive Properties and Phenolic Compound Profiles of Turnip-Rooted, Plain-Leafed and Curly-Leafed Parsley Cultivars Ângela Liberal 1 , Ângela Fernandes 1 , Nikolaos Polyzos 2 , Spyridon A. Petropoulos 2,* , Maria Inês Dias 1 , José Pinela 1 , Jovana Petrovi´c 3, Marina Sokovi´c 3 , Isabel C.F.R. Ferreira 1 and Lillian Barros 1,* 1 Mountain Research Center (CIMO), Institute Polytechnic of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (Â.L.); [email protected] (Â.F.); [email protected] (M.I.D.); [email protected] (J.P.); [email protected] (I.C.F.R.F.) 2 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; [email protected] 3 Institute for Biological Research “Siniša Stankovi´c”-NationalInstitute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; [email protected] (J.P.); [email protected] (M.S.) * Correspondence: [email protected] (S.A.P.); [email protected] (L.B.); Tel.: +30-2421-093-196 (S.A.P.); +351-2733-309-01 (L.B.) Academic Editor: Ryszard Amarowicz Received: 30 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: Petroselinum crispum Mill., Fuss., is a culinary vegetable used as an aromatic herb that garnishes and flavours a great variety of dishes. In the present study, the chemical profiles and bioactivities of leaf samples from 25 cultivars (three types: plain- and curly-leafed and turnip-rooted) from this species were assessed. Seven phenolic compounds were identified in all the varieties, including apigenin and kaempherol derivates.