Airly Mine Extension Project Flora and Fauna Assessment
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Powerful Pollinators Encouraging Insect Pollinators in Farm Landscapes
Bilpin, Blue Mountains: NSW Powerful pollinators Encouraging insect pollinators in farm landscapes Pollinators are an essential component of agricultural production and of healthy, biodiverse landscapes. Protecting and enhancing pollinator resources on farms will help support a diverse range of pollinators. This brochure provides an introduction to encouraging insect pollinators on farms, including a guide to choosing plants that will support diverse pollinators throughout the year. The power of pollinators Pollinators – mostly insects, but also birds and mammals – assist the formation of seeds and fruit in many plant species by visiting flowers in search of food (nectar and/or pollen). Whilst foraging they transfer pollen from one flower to another, facilitating fertilization, which results in fruits and seeds. Honey bees, native bees and other native insects like hoverflies, wasps and butterflies provide essential © Amy-Marie Gilpin pollination services for native plants, Native vegetation supports pollinators by providing food and nesting sites. Nearby crops and garden flowers, fruits and vegetables. pastures will benefit from the increased abundance and diversity of pollinators in the landscape. Pollinators and food security Insect populations are in decline Backyard biodiversity Without insect pollinators, the quantity worldwide due to land clearing, Insect pollinators are a prime example and diversity of food and flowers intensive or monocultural of the importance of healthy ecosystems grown in backyard gardens would be agriculture, pesticide use, in urban gardens, parks and reserves. severely restricted. Many of the foods Insects are the ‘canaries in the coal mine’ we eat, from gardens and farms, pollution, colony disease, of our urban and rural environments. benefit from pollination. -
Full Plant Catalogue
Full Plant Catalogue visit us at www.growingspectrum.co.nz or look for us on facebook PMS 323 PMS 254 Contents Mission Statement 1 Company Profile 2 General Information 3 Roses 5 Topiary 7 Perennials & Potted Bulbs 9 Ornamental Shrubs 31 Mission Statement To be a wholesale nursery of honesty and integrity, growing and marketing a wide spectrum of quality plants while providing prompt efficient service to our customers. To have motivated knowledgeable staff, innovative in both production and promotion while caring about the well being and safety of the others we work with and profiting fairly through our efficiency. Growing Spectrum Plant Catalogue • www.growingspectrum.co.nz 1 Company Profile Growing Spectrum is geared to sell 95% to retail Garden Centres, with a lesser volume to landscapers, local bodies and, more recently, overseas companies looking for quality export product. Our Company is focused on producing premium quality plants and has achieved respect throughout the industry for maintaining this focus. Our reputation for experience, quality and being able to predict future trends has gained us recognition as a market leader in the Nursery industry. A large percentage of our product is grown on “spec”; the balance on contract. Growing Spectrum welcomes enquiries from clients requiring contract-grown stock. Our growing area consists of: 20 acres of Field Product and 8 acres of Container Product. We are currently producing over 450,000 plants per annum. Each week our current stock availability is reassessed and updated. A monthly user-friendly catalogue is produced for our extensive client list. In December we also release our Annual Indent Catalogue, enabling customers to forward order product. -
Boundary Hill South Project Environmental Impact Statement Volume 5 – Appendices February 2014 Boundary Hill South Project P2
BOUNDARY HILL SOUTH PROJECT ENVIRONMENTAL IMPACT STATEMENT Volume 5 – Appendices February 2014 BOUNDARY HILL SOUTH PROJECT P2 Terrestrial Fauna Assessment NOTE: At the time of preparation of this technical assessment, the Project site included a larger footprint of 1,069 hectares. In June 2013, a decision was made to reduce the size of the Project site by removing a portion of the Mining Lease Application (MLA) area. This portion of the site, otherwise known as the Timber Reserve area, has been removed from the Project MLA and will not be subject to mining activity as part of the Project. This amendment to the MLA boundary reduces the size of the Project site from 1,069 hectares to 630 hectares. As such, the terrestrial fauna assessment has been undertaken within a broader survey area and included the Timber Reserve area. Whilst the terrestrial fauna survey was undertaken over the broader study area to include the originally proposed MLA, the impact assessment contained in Chapter 12A Terrestrial Ecology considers the revised Project area of 630 hectares. Boundary Hill South Environmental Impact Statement Boundary Hill South Anglo Coal (Callide Management) Pty Ltd 01-Nov-2012 Doc No. 60238883 Terrestrial Fauna Technical Report AECOM Boundary Hill South Terrestrial Fauna Technical Report Terrestrial Fauna Technical Report Client: Anglo Coal (Callide Management) Pty Ltd ABN: 75 009 666 200 Prepared by AECOM Australia Pty Ltd 21 Stokes Street, PO Box 5423, Townsville QLD 4810, Australia T +61 7 4729 5500 F +61 7 4729 5599 www.aecom.com ABN 20 093 846 925 01-Nov-2012 Job No.: 60238883 AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001. -
Developing Leptospermum for Cut Flowers
Developing leptospermum for cut flowers APRIL 2014 RIRDC Publication No. 13/102 Developing Leptospermum for cut flowers by Anthony T. Slater, John D. Faragher, Slobodan Vujovic, Fran Richardson, Geoff Kelly, Peter Franz and MaryAnne Blakemore April 2014 RIRDC Publication No 13/102 RIRDC Project No DAV-184A © 2014 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-595-0 ISSN 1440-6845 Developing Leptospermum for cut flowers Publication No. 13/102 Project No. DAV-184A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. -
Thermoregulation in Three Southern African Bat Species Inhabiting a Hot, Semi- Arid Environment
Thermoregulation in three southern African bat species inhabiting a hot, semi- arid environment. By: Dawn Cory Toussaint Submitted in partial fulfilment of the requirements for the degree MSc (Zoology) in the Faculty of Natural & Agricultural Sciences. University of Pretoria February 2012 © University of Pretoria 2 Declaration I, Dawn Cory Toussaint, declare that the following thesis/dissertation, which I hereby submit for the degree MSc Zoology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signature: Date: 17/09/2012 3 Acknowledgements I would like to thank my supervisor Prof. Andrew McKechnie for all his support, commitment, guidance and devotion of time to this project and for having to proof read so many drafts. I would also like to thank my co-supervisor, Prof. Mark Brigham for all his support and encouragement over the course of this project. A generous thank you to Peter and Jane Phillips for allowing me to conduct my research on their game farm, Makulu Makete and for all their support and encouragement. I would like to thank all my field assistants from both fieldwork seasons for their enthusiasm, willingness to learn and support over the course of my research namely; Cedric and Yvonne Cory Toussaint, Mark and Anne Brigham, Hermann Müller, Philip Jordaan, Frederik van Tonder, Veronique Wolfaardt, Phillip Crawford, Nancy and Dean Barber, and Treharne Drury. A special thank you to my parents Cedric and Yvonne Cory Toussaint for their undying support and encouragement as I have pursued my interest in wildlife, without their support, none of this would have been possible. -
Species List
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Hawkesbury-Nepean, New South Wales
Biodiversity Summary for NRM Regions Guide to Users Background What is the summary for and where does it come from? This summary has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. It highlights important elements of the biodiversity of the region in two ways: • Listing species which may be significant for management because they are found only in the region, mainly in the region, or they have a conservation status such as endangered or vulnerable. • Comparing the region to other parts of Australia in terms of the composition and distribution of its species, to suggest components of its biodiversity which may be nationally significant. The summary was produced using the Australian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. The list of families covered in ANHAT is shown in Appendix 1. Groups notnot yet yet covered covered in inANHAT ANHAT are are not not included included in the in the summary. • The data used for this summary come from authoritative sources, but they are not perfect. -
Regent Honeyeater– Profile
APPENDIX 5: THREATENED FAUNA SPECIES PROFILES The following profiles are sourced from the Department of Environment and Climate Change. Regent Honeyeater – profile Scientific name: Xanthomyza phrygia Conservation status in NSW: Endangered National conservation status: Endangered Description The Regent Honeyeater is a striking and distinctive, medium-sized, black and yellow honeyeater with a sturdy, curved bill. Adults weigh 35 - 50 grams, are 20 - 24 cm long and have a wings-pan of 30 cm. Its head, neck, throat, upper breast and bill are black and the back and lower breast are pale lemon in colour with a black scalloped pattern. Its flight and tail feathers are edged with bright yellow. There is a characteristic patch of dark pink or cream-coloured facial-skin around the eye. Sexes are similar, though males are larger, darker and have larger patch of bare facial-skin. The call is a soft metallic bell- like song; birds are most vocal in non-breeding season. Distribution The Regent Honeyeater mainly inhabits temperate woodlands and open forests of the inland slopes of south-east Australia. Birds are also found in drier coastal woodlands and forests in some years. Once recorded between Adelaide and the central coast of Queensland, its range has contracted dramatically in the last 30 years to between northeastern Victoria and south- eastern Queensland. There are only three known key breeding regions remaining: north-east Victoria (Chiltern-Albury), and in NSW at Capertee Valley and the Bundarra-Barraba region. In NSW the distribution is very patchy and mainly confined to the two main breeding areas and surrounding fragmented woodlands. -
Physiological Implications of Roost Colour and Choice in a Microbat
Journal of Thermal Biology 60 (2016) 162–170 Contents lists available at ScienceDirect Journal of Thermal Biology journal homepage: www.elsevier.com/locate/jtherbio Black or white? Physiological implications of roost colour and choice in a microbat Anna C. Doty n, Clare Stawski, Shannon E. Currie, Fritz Geiser Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, New England article info abstract Article history: Although roost choice in bats has been studied previously, little is known about how opposing roost Received 19 April 2016 colours affect the expression of torpor quantitatively. We quantified roost selection and thermoregula- Accepted 15 July 2016 tion in a captive Australian insectivorous bat, Nyctophilus gouldi (n¼12) in winter when roosting in black Available online 17 July 2016 and white coloured boxes using temperature-telemetry. We quantified how roost choice influences torpor expression when food was provided ad libitum or restricted in bats housed together in an outdoor aviary exposed to natural fluctuations of ambient temperature. Black box temperatures averaged 5.1 °C (maximum 7.5 °C) warmer than white boxes at their maximum daytime temperature. Bats fed ad libitum chose black boxes on most nights (92.9%) and on 100% of nights when food-restricted. All bats used torpor on all study days. However, bats fed ad libitum and roosting in black boxes used shorter torpor and spent more time normothermic/active at night than food-restricted bats and bats roosting in white boxes. Bats roosting in black boxes also rewarmed passively more often and to a higher skin temperature than those in white boxes. -
Australasian Bat Society Newsletter, Number 31, Nov 2008
e Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter Number 35 November 2010 ABS Website: http://abs.ausbats.org.au ABS Listserver: http://listserv.csu.edu.au/mailman/listinfo/abs ISSN 1448-5877 e Australasian Bat Society Newsletter, Number 31, Nov 2008 The Australasian Bat Society Newsletter, Number 35, November 2010 – Instructions for Contributors – The Australasian Bat Society Newsletter will accept contributions under one of the following two sections: Research Papers, and all other articles or notes. There are two deadlines each year: 10th March for the April issue, and 10th October for the November issue. The Editor reserves the right to hold over contributions for subsequent issues of the Newsletter, and meeting the deadline is not a guarantee of immediate publication. Opinions expressed in contributions to the Newsletter are the responsibility of the author, and do not necessarily reflect the views of the Australasian Bat Society, its Executive or members. For consistency, the following guidelines should be followed: • Emailed electronic copy of manuscripts or articles, sent as an attachment, is the preferred method of submission. Faxed and hard copy manuscripts will be accepted but reluctantly! Please send all submissions to the Newsletter Editor at the email or postal address below. • Electronic copy should be in 11 point Arial font, left and right justified with 16 mm left and right margins. Please use Microsoft Word; any version is acceptable. • Manuscripts should be submitted in clear, concise English and free from typographical and spelling errors. Please leave two spaces after each sentence. • Research Papers should include: Title; Names and affiliation of authors and an email address for corresponding author; Abstract (approx.