Developing Leptospermum for Cut Flowers

Total Page:16

File Type:pdf, Size:1020Kb

Developing Leptospermum for Cut Flowers Developing leptospermum for cut flowers APRIL 2014 RIRDC Publication No. 13/102 Developing Leptospermum for cut flowers by Anthony T. Slater, John D. Faragher, Slobodan Vujovic, Fran Richardson, Geoff Kelly, Peter Franz and MaryAnne Blakemore April 2014 RIRDC Publication No 13/102 RIRDC Project No DAV-184A © 2014 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-595-0 ISSN 1440-6845 Developing Leptospermum for cut flowers Publication No. 13/102 Project No. DAV-184A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to RIRDC Communications on phone 02 6271 4100. Researcher Contact Details Anthony T. Slater Department of Primary Industries, Knoxfield Private Bag 15 Ferntree Gully VIC 3156 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form. RIRDC Contact Details Rural Industries Research and Development Corporation Level 2, 15 National Circuit BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6271 4100 Fax: 02 6271 4199 Email: [email protected]. Web: http://www.rirdc.gov.au Electronically published by RIRDC in April 2014 Print-on-demand by Union Offset Printing, Canberra at www.rirdc.gov.au or phone 1300 634 313 ii Foreword Wildflowers are cultivated in all States, Australia’s annual wildflower production is valued at around $30 million at the farm gate, and the value of exports amounted to just under $6.7 million in 2011/2012. The key commercial wildflowers are Geraldton wax, kangaroo paw, Thryptomene, and species of Banksia, Telopea, Leucadendron and Protea, a key factor in the growth of this industry is the development of new products. Leptospermum (tea-tree) is a diverse group of plants, and includes some highly attractive forms that are considered to be a valuable ornamental crop. The group has been limited in its use as a cut flower due to postharvest problems of some cultivars. Other cultivars have a good vase life and there is a strong interest in Leptospermum in export markets. This project was conducted to produce superior Leptospermum hybrids that can continuously supply cut flowers for the market, through a breeding program based on superior selections, and the development of postharvest techniques to maximise vase life. This project was funded from RIRDC Core Funds which are provided by the Federal Government. This report is an addition to RIRDC’s diverse range of over 2000 research publications and it forms part of our Wildflowers and Native Plants R&D program, which aims to improve the profitability, productivity and sustainability of the Australian wildflower and native plant industry. RIRDC’s publications are available for viewing, free downloading or purchasing online at www.rirdc.gov.au. Purchases can also be made by phoning 1300 634 313. Craig Burns Managing Director Rural Industries Research and Development Corporation iii Acknowledgments This project was conducted with financial support from the Rural Industries Research and Development Corporation, the Victorian Department of Primary Industries (DPI) through its Specialised Rural Industries Program, and Longford Flowers. We would also like to thank a number of people who have assisted the project through various efforts. Denis Tricks and John Cane (Longford Flowers) have provided guidance and critical comment on the work as well as financial support and significant inputs through the provision of floral materials and the establishment and maintenance of a field site. Alan Noon, Trevor Davy, Norm Morrison, Janyce Truett, Pam Rogers and Sam Ryan assisted with the field work at Knoxfield. Virginia Williamson contributed to the experiments reported in Tables 4.14 and 4.16. Abbreviations a.i. active ingredient ANOVA Analysis of Variance DI deionised LSD least significant difference 1-MCP 1-methylcyclopropene RH relative humidity STS silver thiosulphite > greater than iv Definitions Clone – one of a population of identical plants multiplied by vegetative means Cultivar – a cultivated variety, and therefore a plant possessing superior commercial attributes Hybrids – progeny from crossing parents of different species Hybrid family – siblings from a cross using parents of different species Intergeneric hybrid – a cross between two species from different genera Interspecific hybrid – individual product of a cross between two species within the same genus Parents – female and male used in breeding Selection(s) – individual selected plant(s) from a group of plants Style – combination of commercially desirable attributes identifiable as a characteristic form; individual cultivars possessing the same style need not belong to the same cross, family or species. Superior selections – individuals exhibiting superior characters v Contents Foreword ............................................................................................................................................... iii Acknowledgments ................................................................................................................................. iv Abbreviations ........................................................................................................................................ iv Definitions .............................................................................................................................................. v Executive Summary.............................................................................................................................. ix 1. Introduction ....................................................................................................................................... 1 1.1. Background ................................................................................................................................ 1 1.2. Selection and Breeding .............................................................................................................. 2 1.3. Postharvest ................................................................................................................................. 2 2. Objectives ........................................................................................................................................... 3 3. Methodology ....................................................................................................................................... 4 3.1 Plant Cultivation ......................................................................................................................... 4 3.1.1. Plant collection ................................................................................................................. 4 3.1.2. Plant propagation .............................................................................................................. 4 3.1.3. Nursery culture ................................................................................................................. 4 3.1.4. Field sites .......................................................................................................................... 5 3.1.5. Pests and diseases ............................................................................................................. 5 3.2. Evaluation of Leptospermum for use as cut flowers .................................................................. 6 3.3. Leptospermum breeding program .............................................................................................. 6 3.3.1. Reproductive biology ....................................................................................................... 6 3.3.2. Hybridisation program...................................................................................................... 6 3.4. Hybrid evaluation ....................................................................................................................... 6 3.5. Postharvest ................................................................................................................................. 7 3.5.1. Export suitability .............................................................................................................
Recommended publications
  • Two New Taxa of Verticordia (Myrtaceae: Chamelaucieae) from South-Western Australia
    A.S.Nuytsia George 20: 309–318 & M.D. (2010)Barrett,, Two new taxa of Verticordia 309 Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south-western Australia Alex S. George1 and Matthew D. Barrett2,3 1 ‘Four Gables’, 18 Barclay Road, Kardinya, Western Australia 6163 Email: [email protected] 2 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Ave, West Perth, Western Australia 6005 3 School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009 Email: [email protected] Abstract George, A.S. and Barrett, M.D. Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south- western Australia. Nuytsia 20: 309–318 (2010). Verticordia mitchelliana subsp. implexior A.S.George & M.D.Barrett and Verticordia setacea A.S.George are described and discussed. Verticordia setacea belongs with V. gracilis A.S.George in section Platandra, previously a monotypic section. Introduction The genus Verticordia DC. (Myrtaceae: tribe Chamelaucieae) is a charismatic group of shrubs found mainly in south-western Australia, with several species in adjacent arid regions and three in tropical Australia (George 1991; George & Pieroni 2002). Verticordia is currently defined solely on the possession of divided calyx lobes, but the limits between Verticordia and the related genera Homoranthus A.Cunn. ex Schauer, Chamelaucium Desf. and Darwinia Rudge are difficult to define conclusively, and other characteristics such as anther morphology suggest conflicting relationships (Bentham 1867; Craven & Jones 1991; George 1991). A recent analysis using a single chloroplast gene, with limited sampling of Verticordia taxa (Ma et al. 2002), suggests that Verticordia may be polyphyletic.
    [Show full text]
  • Wildflowers to Grow in Your Garden Here Is the Key to the List Large
    Wildflowers to grow in your garden Here is the key to the list Trees Ground covers Shrubs Eucalypts Banksias Myrtle family Banksias Others Baeckea Other Beaufortia Calothamnus Chamelaucium Hypocalymna Kunzea Melaleuca and Callistemon Scholtzia Thryptomene Verticordia Large trees. Think very carefully before you plant them! Large trees, such as lemon scented gums or spotted gums may look great in parks - at least local councils seem to think so (we would rather see local plants). But you may regret planting them in a modern small garden. That doesn't mean there is no room for trees. There are hundreds of attractive small trees that grow very well in native gardens. Here are just a few. Small trees Eucalypts with showy flowers. Eucalytpus caesia Comes in two sub species with the one known as "silver princess" being readily available in Perth. Lovely multi- stemmed weeping tree with pendulous pink flowers and silver-bell fruits. E. torquata Small upright tree with attractive pink flowers. Very drought resistant. E. ficifolia Often called the WA Flowering gum. Ranges in size from small to quite large and in flower colour from deep red to = Corymbia ficifolia orange to pale pink. In WA subject to a serious disease - called canker. Many trees succumb when about 10 or so years old, either dying or becoming very unhealthy. E. preissiana Bell fruited mallee. Small tree (or shrub) with bright yellow flowers. E. erythrocorys Illyarrie, red cap gum or helmet nut gum. Large golden flowers in February preceded by a bright red bud cap. Tree tends to be bit floppy and to need pruning.
    [Show full text]
  • Blue Tier Reserve Background Report 2016File
    Background Report Blue Tier Reserve www.tasland.org.au Tasmanian Land Conservancy (2016). The Blue Tier Reserve Background Report. Tasmanian Land Conservancy, Tasmania Australia. Copyright ©Tasmanian Land Conservancy The views expressed in this report are those of the Tasmanian Land Conservancy and not the Federal Government, State Government or any other entity. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Tasmanian Land Conservancy. Front Image: Myrtle rainforest on Blue Tier Reserve - Andy Townsend Contact Address Tasmanian Land Conservancy PO Box 2112, Lower Sandy Bay, 827 Sandy Bay Road, Sandy Bay TAS 7005 | p: 03 6225 1399 | www.tasland.org.au Contents Acknowledgements ................................................................................................................................. 1 Acronyms and Abbreviations .......................................................................................................... 2 Introduction ............................................................................................................................................ 3 Location and Access ................................................................................................................................ 4 Bioregional Values and Reserve Status ..................................................................................................
    [Show full text]
  • Phytothérapie Anti-Infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira
    Phytothérapie anti-infectieuse Springer Paris Berlin Heidelberg New York Hong Kong Londres Milan Tokyo Paul Goetz Kamel Ghedira Phytothérapie anti-infectieuse Paul Goetz Docteur en médecine Enseignant en phytothérapie Faculté de médecine Paris XIII-Bobigny 58, route des Romains 67200 Strasbourg Kamel Ghedira Professeur à la faculté de pharmacie Université de Monastir Laboratoire de Pharmacognosie Rue Avicenne 5000 Monastir-Tunisie ISBN : 978-2-8178-0057-8 Springer Paris Berlin Heidelberg New York © Springer-Verlag France, Paris, 2012 Springer-Verlag est membre du groupe Springer Science + Business Media Cet ouvrage est soumis au copyright. Tous droits réservés, notamment la reproduction et la repré- sentation, la traduction, la réimpression, l’exposé, la reproduction des illustrations et des tableaux, la transmission par voie d’enregistrement sonore ou visuel, la reproduction par microfilm ou tout autre moyen ainsi que la conservation des banques de données. La loi française sur le copyright du 9 septembre 1965 dans la version en vigueur n’autorise une reproduction intégrale ou partielle que dans certains cas, et en principe moyennant le paiement des droits. Toutes représentation, reproduction, contrefaçon ou conservation dans une banque de données par quelques procédé que ce soit est sanctionnée par la loi pénale sur le copyright. L’utilisation dans cet ouvrage de désignations, dénominations commerciales, marques de fabrique, etc. même sans spécification ne signifie pas que ces termes soient libres de la législation sur les marques de fabrique et la protection des marques et qu’ils puissent être utilisés par chacun. La maison d’édition décline toute responsabilité quant à l’exactitude des indications de dosage et des modes d’emplois.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Indigenous Plants of Bendigo
    Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4
    [Show full text]
  • The Vase Life of Waxflower (Chamelaucium Desf.) Is Affected by the Weight Ratio of Flowers to Stem
    FOLIA HORTICULTURAE Folia Hort. 28/2 (2016): 201-207 Published by the Polish Society DOI: 10.1515/fhort-2016-0024 for Horticultural Science since 1989 ORIGINAL ARTICLE Open access http://www.foliahort.ogr.ur.krakow.pl The vase life of waxflower Chamelaucium( Desf.) is affected by the weight ratio of flowers to stem Cao D. Dung1*, Kevin Seaton2, Zora Singh3 1 Potato, Vegetable and Flower Research Center Thai phien village, Ward 12, Da Lat, Lam Dong, Vietnam 2 Department of Agriculture and Food Western Australia 3 Baron-Hay Court, South Perth, WA 6151, Australia 3 Department of Environment and Agriculture Curtin University Kent St., Bentley, Perth, WA 6102, Australia ABSTRACT The effect of flower weight on changes in the vase life of flowers and leaves of waxflowers was studied by evaluating the arranged flower weight of cultivars derived from theChamelaucium uncinatum, Chamelaucium megalopetalum and Verticordia species. Competition for water and carbohydrates between flowers and leaves influenced vase life. The removal of flowers had at least four times the effect on leaf vase life as the removal of leaves on flower vase life. Supplying exogenous sucrose to satisfy the demand for carbohydrates negated this effect, indicating that flowers depend on carbohydrates being supplied from leaves to maintain vase life. Cultivars with a greater proportion of flowers (on a weight basis) improved the vase life of flowers at the expense of the leaves. Cultivars with large flowers or many small flowers or a greater weight ratio of flowers to stem appeared to draw more carbohydrates and water from the leaves, giving them a longer vase life and decreasing the vase life of the leaves.
    [Show full text]
  • Clematis Clematis Are the Noblest and Most Colorful of Climbing Vines
    Jilacktborne SUPER HARDY Clematis Clematis are the noblest and most colorful of climbing vines. Fortunately, they are also one of the hardiest, most disease free and therefore easiest of culture. As the result of our many years of research and development involving these glorious vines, we now make available to the American gardening public: * Heavy TWO YEAR plants (the absolute optimum size for successful plant­ RED CARDINAL ing in your garden). * Own rooted plants - NOT GRAFTED - therefore not susceptible to com­ mon Clematis wilt. * Heavily rooted, BLOOMING SIZE plants, actually growing in a rich 100% organic medium, - all in an especially designed container. * Simply remove container, plant, and - "JUMP BACK"!! For within a few days your Blackthorne Clematis will be growing like the proverbial "weed", and getting ready to flower! * Rare and distinctive species and varieties not readily available commer­ cially - if at all! * Plants Northern grown to our rigid specifications by one of the world's premier Clematis growers and plantsmen, Arthur H. Steffen, Inc. * The very ultimate in simplified, pictorial cultural instructions AVAILABLE NOWHERE ELSE, Free with order. - OLD GLORY CLEMATIS COLLECTION - RED RED CARDINAL - New from France comes this, the most spec­ tacular red Clematis ever developed. It is a blazing mass of glory from May on. Each of the large, velvety, rich crimson red blooms is lit up by a sun-like mass of bright golden stamens, in the very heart of the flower! Red Cardinal's rich brilliance de- fies description! $6.95 each - 3 for $17.95 POSTPA ID WHITE MME LE COULTRE - Another great new one from France, and the finest white hybrid Clematis ever developed.
    [Show full text]
  • NLM Leptospermum Lanigerum – Melaleuca Squarrosa Swamp Forest
    Vegetation Condition Benchmarks version 3 Non-Eucalypt Forest and Woodland NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Community Description: Leptospermum lanigerum – Melaleuca squarrosa swamp forests dominated by Leptospermum lanigerum and/or Melaleuca squarrosa are common in the north-west and west and occur occasionally in the north-east and east where L. lanigerum usually predominates. There are also extensive tracts on alluvial flats of the major south-west rivers. The forests are dominated by various mixtures of L. lanigerum and M. squarrosa but with varying lesser amounts of various species of Acacia and rainforest species also present. Trees are usually > 8 m in height. Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 70% - - - Large Trees - 10 25 800 Organic Litter 40% - Logs ≥ 10 - 20 Large Logs ≥ 12.5 Recruitment Episodic Understorey Life Forms LF code # Spp Cover % Tree or large shrub T 4 20 Medium shrub/small shrub S 3 15 Herbs and orchids H 5 5 Grass G 1 1 Large sedge/rush/sagg/lily LSR 1 1 Medium to small sedge/rush/sagg/lily MSR 2 1 Ground fern GF 2 5 Tree fern TF 1 5 Scrambler/Climber/Epiphytes SCE 2 5 Mosses and Lichens ML 1 20 Total 10 22 Last reviewed – 5 July 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg NLM Leptospermum lanigerum – Melaleuca squarrosa swamp forest Species lists: Canopy Tree Species Common Name Notes Leptospermum lanigerum woolly teatree Melaleuca
    [Show full text]
  • NLE Leptospermum Forest: Coastal Facies
    Vegetation Condition Benchmarks version 2 Non-Eucalypt Forest and Woodland NLE Leptospermum forest: coastal facies Community Description: Leptospermum forest is dominated by one or more of Leptospermum lanigerum, L. scoparium, L. glaucescens or L. nitidum (5 – 10 m) with semi-closed or closed canopies. Mid and ground layers may be sparsely shrubby and sedgy, or the ground may be bare or covered by deep litter. The coastal facies of NLE has L. glaucescens and sometimes L. scoparium in the canopy and may be diverse and uneven in height where it has suffered patchy effects of fire or windthrow. A minor facies dominated by Leptospermum lanigerum and Acacia melanoxylon in coastal swamps is included. This benchmark is one of 2 benchmarks available to assess the condition of NLE. Benchmarks: Length Component Cover % Height (m) DBH (cm) #/ha (m)/0.1 ha Canopy 70% - - - Large Trees - 80 25 1000 Organic Litter 40% - Logs ≥ 10 - 3 Large Logs ≥ 12.5 Recruitment Episodic Understorey Life Forms LF code # Spp Cover % Tree or large shrub T 4 10 Medium shrub/small shrub S 5 10 Prostrate shrub PS 2 5 Herbs and orchids H 1 1 Medium to small sedge/rush/sagg/lily MSR 1 5 Ground fern GF 1 1 Scrambler/Climber/Epiphytes SCE 2 1 Total 7 16 Last reviewed – 5 July 2016 Tasmanian Vegetation Monitoring and Mapping Program Department of Primary Industries, Parks, Water and Environment http://www.dpipwe.tas.gov.au/tasveg NLE Leptospermum forest: coastal facies Species lists: Canopy Tree Species Common Name Notes Acacia melanoxylon blackwood Leptospermum scoparium common teatree Leptospermum lanigerum woolly teatree Leptospermum glaucescens smoky teatree Leptospermum nitidum shiny teatree Typical Understorey Species * Common Name LF Code Acacia spp.
    [Show full text]
  • BIOACTIVE LEPTOSPERMUM for GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE?
    BIOACTIVE LEPTOSPERMUM FOR GIPPSLAND Rob Waddell Grand Ridge Propagation WHO ARE WE? • Grand Ridge Propagation nursery • Based at Seaview, south of Warragul • We have sheep, cattle, a nursery and more recently a bee hive (or 2) • 2017 production about 120,000 native seedlings, planting about 30,000 Which species have potential for Gippsland? Leptospermum scoparium (Manuka) • Grows 3-5m • Flowers November/December • Seed sourced from New Zealand’s North and South islands from wild populations producing MGO 300 to 500 honey Leptospermum polygalifolium ssp polygalifolium (Jelly Bush) • Grows 3-7m • Flowers November/December • Seed sourced from southern NSW Leptospermum lanigerum (Woolly tea tree) • Grows 3-7m • Flowers October/November • Seed sourced locally (test results to come) • Tolerates extremely wet and boggy conditions Leptospermum continentale (Prickly tea tree) • Grows 3-5m • Flowers January/February • Seed sourced locally (test results to come) Some of the key factors for success • Level of genetic bioactivity of the seedlings • Nectar yield-massive flower production • Plant density • Principal nectar source for foraging bees Planting densities for Gippsland What is your end goal? • WINDBREAKS • PLANTATIONS • Tea tree only plant 2m apart • Grazing sheep or slashing grass • Mix species winbreaks (tea tree, plant 5 to 6m apart or 400 to eucalypts etc) plant 3m apart 300 plants/ha • Full coverage of site plant 2 to 3m apart or 2500 to 1150 plants/ha HONEY! • Takes 12 to 18 months to reach peak bioactivity • Can be difficult to extract, could have implications for flow hives? • Potential yields up to 40kg/hive with 1 to 4 hives/ha (New Zealand data) Other considerations • Flowering takes 3 to 4 years from planting depending on site • Ensure species is suitable for the site • Soil types, waterlogging, coastal exposure • Aspect • Shading QUESTIONS?.
    [Show full text]
  • Powerful Pollinators Encouraging Insect Pollinators in Farm Landscapes
    Bilpin, Blue Mountains: NSW Powerful pollinators Encouraging insect pollinators in farm landscapes Pollinators are an essential component of agricultural production and of healthy, biodiverse landscapes. Protecting and enhancing pollinator resources on farms will help support a diverse range of pollinators. This brochure provides an introduction to encouraging insect pollinators on farms, including a guide to choosing plants that will support diverse pollinators throughout the year. The power of pollinators Pollinators – mostly insects, but also birds and mammals – assist the formation of seeds and fruit in many plant species by visiting flowers in search of food (nectar and/or pollen). Whilst foraging they transfer pollen from one flower to another, facilitating fertilization, which results in fruits and seeds. Honey bees, native bees and other native insects like hoverflies, wasps and butterflies provide essential © Amy-Marie Gilpin pollination services for native plants, Native vegetation supports pollinators by providing food and nesting sites. Nearby crops and garden flowers, fruits and vegetables. pastures will benefit from the increased abundance and diversity of pollinators in the landscape. Pollinators and food security Insect populations are in decline Backyard biodiversity Without insect pollinators, the quantity worldwide due to land clearing, Insect pollinators are a prime example and diversity of food and flowers intensive or monocultural of the importance of healthy ecosystems grown in backyard gardens would be agriculture, pesticide use, in urban gardens, parks and reserves. severely restricted. Many of the foods Insects are the ‘canaries in the coal mine’ we eat, from gardens and farms, pollution, colony disease, of our urban and rural environments. benefit from pollination.
    [Show full text]