Curriculum Vitae Fulbright Postdoctoral Fellow Soil and Fungal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two New Taxa of Verticordia (Myrtaceae: Chamelaucieae) from South-Western Australia
A.S.Nuytsia George 20: 309–318 & M.D. (2010)Barrett,, Two new taxa of Verticordia 309 Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south-western Australia Alex S. George1 and Matthew D. Barrett2,3 1 ‘Four Gables’, 18 Barclay Road, Kardinya, Western Australia 6163 Email: [email protected] 2 Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, Fraser Ave, West Perth, Western Australia 6005 3 School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009 Email: [email protected] Abstract George, A.S. and Barrett, M.D. Two new taxa of Verticordia (Myrtaceae: Chamelaucieae) from south- western Australia. Nuytsia 20: 309–318 (2010). Verticordia mitchelliana subsp. implexior A.S.George & M.D.Barrett and Verticordia setacea A.S.George are described and discussed. Verticordia setacea belongs with V. gracilis A.S.George in section Platandra, previously a monotypic section. Introduction The genus Verticordia DC. (Myrtaceae: tribe Chamelaucieae) is a charismatic group of shrubs found mainly in south-western Australia, with several species in adjacent arid regions and three in tropical Australia (George 1991; George & Pieroni 2002). Verticordia is currently defined solely on the possession of divided calyx lobes, but the limits between Verticordia and the related genera Homoranthus A.Cunn. ex Schauer, Chamelaucium Desf. and Darwinia Rudge are difficult to define conclusively, and other characteristics such as anther morphology suggest conflicting relationships (Bentham 1867; Craven & Jones 1991; George 1991). A recent analysis using a single chloroplast gene, with limited sampling of Verticordia taxa (Ma et al. 2002), suggests that Verticordia may be polyphyletic. -
Wildflowers to Grow in Your Garden Here Is the Key to the List Large
Wildflowers to grow in your garden Here is the key to the list Trees Ground covers Shrubs Eucalypts Banksias Myrtle family Banksias Others Baeckea Other Beaufortia Calothamnus Chamelaucium Hypocalymna Kunzea Melaleuca and Callistemon Scholtzia Thryptomene Verticordia Large trees. Think very carefully before you plant them! Large trees, such as lemon scented gums or spotted gums may look great in parks - at least local councils seem to think so (we would rather see local plants). But you may regret planting them in a modern small garden. That doesn't mean there is no room for trees. There are hundreds of attractive small trees that grow very well in native gardens. Here are just a few. Small trees Eucalypts with showy flowers. Eucalytpus caesia Comes in two sub species with the one known as "silver princess" being readily available in Perth. Lovely multi- stemmed weeping tree with pendulous pink flowers and silver-bell fruits. E. torquata Small upright tree with attractive pink flowers. Very drought resistant. E. ficifolia Often called the WA Flowering gum. Ranges in size from small to quite large and in flower colour from deep red to = Corymbia ficifolia orange to pale pink. In WA subject to a serious disease - called canker. Many trees succumb when about 10 or so years old, either dying or becoming very unhealthy. E. preissiana Bell fruited mallee. Small tree (or shrub) with bright yellow flowers. E. erythrocorys Illyarrie, red cap gum or helmet nut gum. Large golden flowers in February preceded by a bright red bud cap. Tree tends to be bit floppy and to need pruning. -
Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia) -
The Vase Life of Waxflower (Chamelaucium Desf.) Is Affected by the Weight Ratio of Flowers to Stem
FOLIA HORTICULTURAE Folia Hort. 28/2 (2016): 201-207 Published by the Polish Society DOI: 10.1515/fhort-2016-0024 for Horticultural Science since 1989 ORIGINAL ARTICLE Open access http://www.foliahort.ogr.ur.krakow.pl The vase life of waxflower Chamelaucium( Desf.) is affected by the weight ratio of flowers to stem Cao D. Dung1*, Kevin Seaton2, Zora Singh3 1 Potato, Vegetable and Flower Research Center Thai phien village, Ward 12, Da Lat, Lam Dong, Vietnam 2 Department of Agriculture and Food Western Australia 3 Baron-Hay Court, South Perth, WA 6151, Australia 3 Department of Environment and Agriculture Curtin University Kent St., Bentley, Perth, WA 6102, Australia ABSTRACT The effect of flower weight on changes in the vase life of flowers and leaves of waxflowers was studied by evaluating the arranged flower weight of cultivars derived from theChamelaucium uncinatum, Chamelaucium megalopetalum and Verticordia species. Competition for water and carbohydrates between flowers and leaves influenced vase life. The removal of flowers had at least four times the effect on leaf vase life as the removal of leaves on flower vase life. Supplying exogenous sucrose to satisfy the demand for carbohydrates negated this effect, indicating that flowers depend on carbohydrates being supplied from leaves to maintain vase life. Cultivars with a greater proportion of flowers (on a weight basis) improved the vase life of flowers at the expense of the leaves. Cultivars with large flowers or many small flowers or a greater weight ratio of flowers to stem appeared to draw more carbohydrates and water from the leaves, giving them a longer vase life and decreasing the vase life of the leaves. -
Overview of the Dynamic Role of Specialty Cut Flowers in the International Cut Flower Market
horticulturae Review Overview of the Dynamic Role of Specialty Cut Flowers in the International Cut Flower Market Anastasios Darras Laboratory of Floriculture and Landscape Architecture, Department of Agriculture, University of Peloponnese, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45199 Abstract: The global cut flower industry has faced serious challenges over the years, but still remains an important sector of agriculture. Floriculture businesses seek new, innovative trends and niches to help increase product sales. Specialty cut flower (SCF) production has increased in the past 20 years in the US, Australia, Africa, and Europe. SCF production and sales could increase further if these new products were supported by dynamic marketing campaigns that focus on their strengths compared to the traditional cut flowers (TCF) such as roses, carnations, gerberas, and chrysanthemums. The major strength of SCF is the eco-friendly profile, which is associated to low CO2 footprints and environmental outputs. This contrasts TCF cultivation, which is associated to high energy inputs, especially at the traditional production centres (e.g., The Netherlands). It is suggested that environmental legislations, production costs, and customer demand for eco-friendly products will positively affect future SCF cultivation and sale. Keywords: roses; gerberas; chrysanthemums; sustainability; floriculture; environmental impact; CO2 footprint Citation: Darras, A. Overview of the Dynamic Role of Specialty Cut 1. Introduction Flowers in the International Cut Global cut flower production and consumption has overcome serious challenges in the Flower Market. Horticulturae 2021, 7, past 20 years, especially those related to global economic recessions. The EU holds the first 51. https://doi.org/10.3390/ place in cut flower and ornamental potted plants sales with 31.0% of the global value, with horticulturae7030051 China and the USA in second and third place, holding 18.6% and 12.5%, respectively [1]. -
Clematis Clematis Are the Noblest and Most Colorful of Climbing Vines
Jilacktborne SUPER HARDY Clematis Clematis are the noblest and most colorful of climbing vines. Fortunately, they are also one of the hardiest, most disease free and therefore easiest of culture. As the result of our many years of research and development involving these glorious vines, we now make available to the American gardening public: * Heavy TWO YEAR plants (the absolute optimum size for successful plant RED CARDINAL ing in your garden). * Own rooted plants - NOT GRAFTED - therefore not susceptible to com mon Clematis wilt. * Heavily rooted, BLOOMING SIZE plants, actually growing in a rich 100% organic medium, - all in an especially designed container. * Simply remove container, plant, and - "JUMP BACK"!! For within a few days your Blackthorne Clematis will be growing like the proverbial "weed", and getting ready to flower! * Rare and distinctive species and varieties not readily available commer cially - if at all! * Plants Northern grown to our rigid specifications by one of the world's premier Clematis growers and plantsmen, Arthur H. Steffen, Inc. * The very ultimate in simplified, pictorial cultural instructions AVAILABLE NOWHERE ELSE, Free with order. - OLD GLORY CLEMATIS COLLECTION - RED RED CARDINAL - New from France comes this, the most spec tacular red Clematis ever developed. It is a blazing mass of glory from May on. Each of the large, velvety, rich crimson red blooms is lit up by a sun-like mass of bright golden stamens, in the very heart of the flower! Red Cardinal's rich brilliance de- fies description! $6.95 each - 3 for $17.95 POSTPA ID WHITE MME LE COULTRE - Another great new one from France, and the finest white hybrid Clematis ever developed. -
Multiple Stable States and Regime Shifts - Environmental Science - Oxford Bibliographies 3/30/18, 10:15 AM
Multiple Stable States and Regime Shifts - Environmental Science - Oxford Bibliographies 3/30/18, 10:15 AM Multiple Stable States and Regime Shifts James Heffernan, Xiaoli Dong, Anna Braswell LAST MODIFIED: 28 MARCH 2018 DOI: 10.1093/OBO/9780199363445-0095 Introduction Why do ecological systems (populations, communities, and ecosystems) change suddenly in response to seemingly gradual environmental change, or fail to recover from large disturbances? Why do ecological systems in seemingly similar settings exhibit markedly different ecological structure and patterns of change over time? The theory of multiple stable states in ecological systems provides one potential explanation for such observations. In ecological systems with multiple stable states (or equilibria), two or more configurations of an ecosystem are self-maintaining under a given set of conditions because of feedbacks among biota or between biota and the physical and chemical environment. The resulting multiple different states may occur as different types or compositions of vegetation or animal communities; as different densities, biomass, and spatial arrangement; and as distinct abiotic environments created by the distinct ecological communities. Alternative states are maintained by the combined effects of positive (or amplifying) feedbacks and negative (or stabilizing feedbacks). While stabilizing feedbacks reinforce each state, positive feedbacks are what allow two or more states to be stable. Thresholds between states arise from the interaction of these positive and negative feedbacks, and define the basins of attraction of the alternative states. These feedbacks and thresholds may operate over whole ecosystems or give rise to self-organized spatial structure. The combined effect of these feedbacks is also what gives rise to ecological resilience, which is the capacity of ecological systems to absorb environmental perturbations while maintaining their basic structure and function. -
Ectomycorrhizal Fungal Communities at Forest Edges 93, 244–255 IAN A
Journal of Blackwell Publishing, Ltd. Ecology 2005 Ectomycorrhizal fungal communities at forest edges 93, 244–255 IAN A. DICKIE and PETER B. REICH Department of Forest Resources, University of Minnesota, St Paul, MN, USA Summary 1 Ectomycorrhizal fungi are spatially associated with established ectomycorrhizal vegetation, but the influence of distance from established vegetation on the presence, abundance, diversity and community composition of fungi is not well understood. 2 We examined mycorrhizal communities in two abandoned agricultural fields in Minnesota, USA, using Quercus macrocarpa seedlings as an in situ bioassay for ecto- mycorrhizal fungi from 0 to 20 m distance from the forest edge. 3 There were marked effects of distance on all aspects of fungal communities. The abundance of mycorrhiza was uniformly high near trees, declined rapidly around 15 m from the base of trees and was uniformly low at 20 m. All seedlings between 0 and 8 m distance from forest edges were ectomycorrhizal, but many seedlings at 16–20 m were uninfected in one of the two years of the study. Species richness of fungi also declined with distance from trees. 4 Different species of fungi were found at different distances from the edge. ‘Rare’ species (found only once or twice) dominated the community at 0 m, Russula spp. were dominants from 4 to 12 m, and Astraeus sp. and a Pezizalean fungus were abundant at 12 m to 20 m. Cenococcum geophilum, the most dominant species found, was abundant both near trees and distant from trees, with lowest relative abundance at intermediate distances. 5 Our data suggest that seedlings germinating at some distance from established ecto- mycorrhizal vegetation (15.5 m in the present study) have low levels of infection, at least in the first year of growth. -
Putting Constraints on the Role of Competition in Limiting Diversity In
Curriculum Vitae - Bryan Latimer Foster Department of Ecology and Evolutionary Biology / Kansas Biological Survey University of Kansas Lawrence, KS 66045 785-864-3346, [email protected] EEB Faculty page: http://www2.ku.edu/~eeb/faculty/foster.shtml Lab Website: http://kbs.ku.edu/people/staff_www/foster/index.htm EDUCATION 1996 Ph.D. Botany and Plant Pathology, Michigan State University. Advisor: Katherine Gross 1992 M.S. Zoology, Michigan State University. Advisor: Katherine Gross 1989 B.S. Range Science, Texas A&M University. Advisor: Fred Smeins PROFFESSIONAL APPOINTMENTS 2012-present Professor, Dept. of Ecology and Evolutionary Biology, University of Kansas 2012-present Senior Scientist, Kansas Biological Survey 2005-2011 Associate Professor, Dept. of Ecology and Evolutionary Biology, University of Kansas 1999-2005 Assistant Professor, Dept. of Ecology and Evolutionary Biology, University of Kansas 1997-1999 Postdoctoral Fellow, Dept. of Ecology, Evolution and Behavior, University of Minnesota. Advisor: David Tilman 1996-1997 Postdoctoral Researcher, Kellogg Biological Station, Michigan State University. Advisor: Katherine Gross, Mike Klug RESEARCH EXPERTISE Community Ecology, Restoration Ecology COURSES TAUGHT Principles of Ecology (BIOL 414) Community and Ecosystems Ecology (BIOL 714) Field and Laboratory Methods in Ecology (BIOL 415) Plant Ecology (BIOL 602) Field and Laboratory Exercises in Plant Ecology (BIOL 607) Biodiversity and Ecosystem Function (BIOL 701 graduate seminar) Species Coexistence and Community Organization (BIOL 701 graduate seminar) Ecological Applications (BIOL 701 graduate seminar) Community Ecology (BIOL 701 graduate seminar) Restoration Ecology (BIOL 701 graduate seminar) EXTERNAL FUNDING 2010-2015. NSF-Population and Community Ecology ($580,362). Plant recruitment, coexistence and community assembly in developing prairie restorations. PI: B. -
Disturbance Ecology and Forest Management: a Review of the Literature
United States Department of Agriculture Disturbance Ecology and Forest Service Intermountain Forest Management: a Research Station General Technical Review of the Literature Report INT-GTR-336 May 1996 Paul Rogers The Author Forest Service has adopted a policy of ecosystem management that emphasizes maintaining the values of sustainability, biodiver- Paul Rogers is an ecologist in the Interior West Resource Inven- sity, productivity, and forest health rather than focusing on particu- tory, Monitoring, and Evaluation Program at the Intermountain lar deliverable products. Research Station. His primary responsibility is to conduct field work In the attempt to implement ecosystem management, land and report on Forest Health Monitoring efforts in the Interior West. managers are asking basic scientific questions that go far beyond He holds a B.S. degree in geography from Utah State University the scope of historical Forest Service research. Concurrent with and an M.S. degree in geography from the University of Wisconsin- this demand are budgets being slashed and research positions Madison. Since beginning his career with the Forest Service in being eliminated. Land managers are being asked to implement 1987, Rogers has specialized in conducting large-scale field and new knowledge-intensive programs at a time when resources are remote vegetative surveys. being dramatically reduced. To address this significant dilemma, we need to re-evaluate how research is conducted within the Forest Service and how more effectively to involve partners from Research Summary the research community. Land managers are incorporating ecosystem perspectives into As a part of this effort, we have established an Intermountain their local and regional management decisions. -
Developing Leptospermum for Cut Flowers
Developing leptospermum for cut flowers APRIL 2014 RIRDC Publication No. 13/102 Developing Leptospermum for cut flowers by Anthony T. Slater, John D. Faragher, Slobodan Vujovic, Fran Richardson, Geoff Kelly, Peter Franz and MaryAnne Blakemore April 2014 RIRDC Publication No 13/102 RIRDC Project No DAV-184A © 2014 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-595-0 ISSN 1440-6845 Developing Leptospermum for cut flowers Publication No. 13/102 Project No. DAV-184A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. -
Norrie's Plant Descriptions - Index of Common Names a Key to Finding Plants by Their Common Names (Note: Not All Plants in This Document Have Common Names Listed)
UC Santa Cruz Arboretum & Botanic Garden Plant Descriptions A little help in finding what you’re looking for - basic information on some of the plants offered for sale in our nursery This guide contains descriptions of some of plants that have been offered for sale at the UC Santa Cruz Arboretum & Botanic Garden. This is an evolving document and may contain errors or omissions. New plants are added to inventory frequently. Many of those are not (yet) included in this collection. Please contact the Arboretum office with any questions or suggestions: [email protected] Contents copyright © 2019, 2020 UC Santa Cruz Arboretum & Botanic Gardens printed 27 February 2020 Norrie's Plant Descriptions - Index of common names A key to finding plants by their common names (Note: not all plants in this document have common names listed) Angel’s Trumpet Brown Boronia Brugmansia sp. Boronia megastigma Aster Boronia megastigma - Dark Maroon Flower Symphyotrichum chilense 'Purple Haze' Bull Banksia Australian Fuchsia Banksia grandis Correa reflexa Banksia grandis - compact coastal form Ball, everlasting, sago flower Bush Anemone Ozothamnus diosmifolius Carpenteria californica Ozothamnus diosmifolius - white flowers Carpenteria californica 'Elizabeth' Barrier Range Wattle California aster Acacia beckleri Corethrogyne filaginifolia - prostrate Bat Faced Cuphea California Fuchsia Cuphea llavea Epilobium 'Hummingbird Suite' Beach Strawberry Epilobium canum 'Silver Select' Fragaria chiloensis 'Aulon' California Pipe Vine Beard Tongue Aristolochia californica Penstemon 'Hidalgo' Cat Thyme Bird’s Nest Banksia Teucrium marum Banksia baxteri Catchfly Black Coral Pea Silene laciniata Kennedia nigricans Catmint Black Sage Nepeta × faassenii 'Blue Wonder' Salvia mellifera 'Terra Seca' Nepeta × faassenii 'Six Hills Giant' Black Sage Chilean Guava Salvia mellifera Ugni molinae Salvia mellifera 'Steve's' Chinquapin Blue Fanflower Chrysolepis chrysophylla var.