Boundary Hill South Project Environmental Impact Statement Volume 5 – Appendices February 2014 Boundary Hill South Project P2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Future Directions in the Research and Management of Marine Snakes
Charles Darwin University Future directions in the research and management of marine snakes Udyawer, Vinay; Barnes, Peter; Bonnet, Xavier; Brischoux, François; Crowe-Riddell, Jenna M.; D'Anastasi, Blanche; Fry, Bryan G.; Gillett, Amber; Goiran, Claire; Guinea, Michael L.; Heatwole, Harold; Heupel, Michelle R.; Hourston, Mathew; Kangas, Mervi; Kendrick, Alan; Koefoed, Inigo; Lillywhite, Harvey B.; Lobo, Aaron S.; Lukoschek, Vimoksalehi; McAuley, Rory; Nitschke, Charlotte; Rasmussen, Arne R.; Sanders, Kate L.; Sheehy, Coleman; Shine, Richard; Somaweera, Ruchira; Sweet, Samuel S.; Voris, Harold K. Published in: Frontiers in Marine Science DOI: 10.3389/fmars.2018.00399 Published: 06/11/2018 Document Version Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Udyawer, V., Barnes, P., Bonnet, X., Brischoux, F., Crowe-Riddell, J. M., D'Anastasi, B., Fry, B. G., Gillett, A., Goiran, C., Guinea, M. L., Heatwole, H., Heupel, M. R., Hourston, M., Kangas, M., Kendrick, A., Koefoed, I., Lillywhite, H. B., Lobo, A. S., Lukoschek, V., ... Voris, H. K. (2018). Future directions in the research and management of marine snakes. Frontiers in Marine Science, 5, 1-16. [399]. https://doi.org/10.3389/fmars.2018.00399 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. -
Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report
Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1. -
Threatened Wildlife Photographic Competition
THREATENED WILDLIFE PHOTOGRAPHIC COMPETITION Winners Announced The Australian Wildlife Society Threatened Wildlife Photographic Competition is a national competition that awards and promotes endangered Australian wildlife through the medium of photography. The Australian Wildlife Society invited photographers to raise the plight of endangered wildlife in Australia. Our Society aims to encourage the production of photographs taken in Australia, by Australians, which reflects the diversity and uniqueness of endangered Australian wildlife. The annual judge’s prize of $1,000 was won by Native Animal Rescue of Western Australia (Mike Jones, Black Cockatoo Coordinator). The winning entry was a photo of a forest red-tailed black cockatoo named Makuru. The forest red-tailed black cockatoo (Calyptorhynchus banksia naso) is listed as Vulnerable; only two of the five subspecies of black cockatoo are listed as Threatened on account of habitat destruction and competition for nesting hollows. The photograph was taken in Native Animal Rescue’s Black Cockatoo Facility (opened 2011 thanks to a generous grant from Lotterywest), which allows them to receive and care for injured or ill black cockatoos. Makuru (a Nyungar word meaning The First Rains or Fertility Season) was the first captive-born black cockatoo at the facility in July 2016. The photo depicts the young cockatoo emerging from its breeding hollow at two months and 15 days. Thank you to all the contributors to the Society’s inaugural Threatened Wildlife Photographic Competition – please enter again next year. Australian Wildlife Vol 4 - Spring 2017 7 The annual people’s choice prize of $500 was won by Matt White Matt’s entry was a photo of a greater glider (Petauroides volans). -
Detailed Ecological Assessment
Detailed Ecological Assessment St Aidan’s Anglican Girls School Ambiwerra Sports Complex MID 30 Thalia Court, Corinda Client St Aidan’s Anglican Girls School File Ref S520038ER001_v1.5 Date 8 March 2021 ii Quality Control St Aidan’s Anglican Girl’s School Prepared for C/- John Gaskell Planning Consultants S5 Consulting Pty Ltd (ACN 600 187 844) 22 Wolverhampton Street Prepared by Stafford, QLD, 4053 T 3356 0550 www.s5consulting.com.au Date 8 March 2021 Version Control Version Description Date Author Reviewer Approver 1.0 FINAL August 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.2 FINAL September 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.3 FINAL November 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.4 FINAL 17 November 2020 KR (Ecologist) LH (Senior Ecologist) RS (Director) 1.5 FINAL 8 March 2021 RG (Ecologist) LH (Senior Ecologist) RS (Director) S5 Consulting Pty Ltd has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of S5 Consulting Pty Ltd. These materials or parts of them may not be reproduced in any form, by any method, for any purpose except with written permission from S5 Consulting Pty Ltd. Subject to these conditions, this document may be transmitted, reproduced or disseminated only in its entirety. S520038ER001_v1.5 Ambiwerra Sports Precinct Detailed Ecological Assessment iii Table of Contents ABBREVIATIONS ...................................................................................................................................................... -
Regional Ecosystem Technical Descriptions
Department of Science, Information Technology, Innovation and the Arts Regional Ecosystem Technical Descriptions Technical descriptions provide a detailed description of the full range in structure and floristic composition of regional ecosystems (e.g. 12.3.5) and their component vegetation communities (e.g. 12.3.5a). The descriptions are compiled using site survey data from the Queensland Herbarium’s CORVEG database. Distribution maps, representative images (if available) and the pre-clearing and remnant area (hectares) of each vegetation community derived from the regional ecosystem mapping (spatial) data are included. The technical descriptions should be used in conjunction with the fields from the regional ecosystem description database (REDD) for a full description of the regional ecosystem. Quantitative site data from relatively undisturbed sites are extracted from CORVEG and summarized to provide information specific to each vegetation community. Technical descriptions include the attributes: tree canopy height and cover and native plant species composition of the predominant layer, which are used to assess the remnant status of vegetation under the Vegetation Management Act 1999. However, as technical descriptions reflect the full range in structure and floristic composition across the climatic, natural disturbance and geographic range of the regional ecosystem, local reference sites should be used where possible (Neldner et al. 2005 section 3.3.3). The technical descriptions are subject to review and are updated as additional -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
An Investigation of the Evolution of Australian Elapid Snake Venoms
toxins Article Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms Timothy N. W. Jackson 1, Ivan Koludarov 1, Syed A. Ali 1,2, James Dobson 1, Christina N. Zdenek 1, Daniel Dashevsky 1, Bianca op den Brouw 1, Paul P. Masci 3, Amanda Nouwens 4, Peter Josh 4, Jonathan Goldenberg 1, Vittoria Cipriani 1, Chris Hay 1, Iwan Hendrikx 1, Nathan Dunstan 5, Luke Allen 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (T.N.W.J.); [email protected] (I.K.); [email protected] (S.A.A.); [email protected] (J.D.); [email protected] (C.N.Z.); [email protected] (D.D.); [email protected] (B.o.d.B.); [email protected] (J.G.); [email protected] (V.C.); [email protected] (C.H.); [email protected] (I.H.) 2 HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan 3 Princess Alexandra Hospital, Translational Research Institute, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 4 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (A.N.); [email protected] (P.J.) 5 Venom Supplies, Tanunda, South Australia 5352, Australia; [email protected] (N.D.); [email protected] (L.A.) * Correspondence: [email protected]; Tel.: +61-4-0019-3182 Academic Editor: Nicholas R. -
Creatures That Can Kill You 5
AROUND THE WORLD PREVIEWITH WSNAKES Preview Snakes slither through nearly every country on Earth. Most snakes are harmless, but some of them are are anything but. In this chapter, we will travel from India to Australia to Africa. The scariest, the deadliest, and the most feared snakes—they’re all here! 1 Around The World With Snakes AROUNDIn a rice THEfield in WORLD India, a young WITH worker namedSNAKES Abhay stepped carefully around the plants he tended. As always, Abhay listened for any quick rustling through the leaves or, worse yet, In a ricea sudden field hissing. in India, But as thea youngsky began workergrowing named Abhaydark stepped with rain carefully clouds, Abhay around became the careless plants he in his hurry to finish his job. He moved quickly tended.through As always, some tallerAbhay plants listened that blocked for any his quick rustlingview through of the ground. the leaves or, worse yet, a sudden hissing. But as the sky began growing dark with rain clouds, Abhay became careless in his hurry to finish his job. He moved quickly through some taller plants that blocked his view of the ground. Then, just at the edge of the field, Abhay felt something very strange. It was as if a thick cord of rope had been yanked beneath his left foot. 3 4 MARIE NOBLE In that same instant, Abhay saw a flash of brown and gold rise up before him—the dreaded Indian cobra. It was not the first time he had seen this terrifying snake. From the time he was a young child, Abhay had often seen these 6- to 10-foot snakes slithering through the village where he lived. -
Proteomic and Genomic Characterisation of Venom Proteins from Oxyuranus Species
This file is part of the following reference: Welton, Ronelle Ellen (2005) Proteomic and genomic characterisation of venom proteins from Oxyuranus species. PhD thesis, James Cook University Access to this file is available from: http://eprints.jcu.edu.au/11938 Chapter 1 Introduction and literature review Chapter 1 Introduction and literature review 1.1 INTRODUCTION Animal venoms are an evolutionary adaptation to immobilise and digest prey and are used secondarily as a defence mechanism (Tu and Dekker, 1991). Intriguingly, evolutionary adaptations have produced a variety of venom proteins with specific actions and targets. A cocktail of protein and peptide toxins have varying molecular compositions, and these unique components have evolved for differing species to quickly and specifically target their prey. The compositions of venoms differ, with components varying within the toxins of spiders, stinging fish, jellyfish, octopi, cone shells, ticks, ants and snakes. Toxins have evolved for the varying mode of actions within different organisms, yet many enzymes are common to different venoms including L-amino oxidases, esterases, aminopeptidases, hyaluronidases, triphosphatases, alkaline phosphomonoesterases, 2 2 phospholipases, phosphodiesterases, serine-metalloproteases and Ca +IMg +-activated proteases. The enzymes found in venoms fall into one or more pharmacological groups including those which possess neurotoxic (causing paralysis or interfering with nervous system function), myotoxic (damaging muscle), haemotoxic (affecting the blood, -
Recommendation of Native Species for the Reforestation of Degraded Land Using Live Staking in Antioquia and Caldas’ Departments (Colombia)
UNIVERSITÀ DEGLI STUDI DI PADOVA Department of Land, Environment Agriculture and Forestry Second Cycle Degree (MSc) in Forest Science Recommendation of native species for the reforestation of degraded land using live staking in Antioquia and Caldas’ Departments (Colombia) Supervisor Prof. Lorenzo Marini Co-supervisor Prof. Jaime Polanía Vorenberg Submitted by Alicia Pardo Moy Student N. 1218558 2019/2020 Summary Although Colombia is one of the countries with the greatest biodiversity in the world, it has many degraded areas due to agricultural and mining practices that have been carried out in recent decades. The high Andean forests are especially vulnerable to this type of soil erosion. The corporate purpose of ‘Reforestadora El Guásimo S.A.S.’ is to use wood from its plantations, but it also follows the parameters of the Forest Stewardship Council (FSC). For this reason, it carries out reforestation activities and programs and, very particularly, it is interested in carrying out ecological restoration processes in some critical sites. The study area is located between 2000 and 2750 masl and is considered a low Andean humid forest (bmh-MB). The average annual precipitation rate is 2057 mm and the average temperature is around 11 ºC. The soil has a sandy loam texture with low pH, which limits the amount of nutrients it can absorb. FAO (2014) suggests that around 10 genera are enough for a proper restoration. After a bibliographic revision, the genera chosen were Alchornea, Billia, Ficus, Inga, Meriania, Miconia, Ocotea, Protium, Prunus, Psidium, Symplocos, Tibouchina, and Weinmannia. Two inventories from 2013 and 2019, helped to determine different biodiversity indexes to check the survival of different species and to suggest the adequate characteristics of the individuals for a successful vegetative stakes reforestation. -
Index of Handbook of the Mammals of the World. Vol. 9. Bats
Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A. -
Hoser, R. T. 2018. New Australian Lizard Taxa Within the Greater Egernia Gray, 1838 Genus Group Of
Australasian Journal of Herpetology 49 Australasian Journal of Herpetology 36:49-64. ISSN 1836-5698 (Print) Published 30 March 2018. ISSN 1836-5779 (Online) New Australian lizard taxa within the greater Egernia Gray, 1838 genus group of lizards and the division of Egernia sensu lato into 13 separate genera. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 1 Jan 2018, Accepted 13 Jan 2018, Published 30 March 2018. ABSTRACT The Genus Egernia Gray, 1838 has been defined and redefined by many authors since the time of original description. Defined at its most conservative is perhaps that diagnosis in Cogger (1975) and reflected in Cogger et al. (1983), with the reverse (splitters) position being that articulated by Wells and Wellington (1985). They resurrected available genus names and added to the list of available names at both genus and species level. Molecular methods have largely confirmed the taxonomic positions of Wells and Wellington (1985) at all relevant levels and their legally available ICZN nomenclature does as a matter of course follow from this. However petty jealousies and hatred among a group of would-be herpetologists called the Wüster gang (as detailed by Hoser 2015a-f and sources cited therein) have forced most other publishing herpetologists since the 1980’s to not use anything Wells and Wellington. Therefore the most commonly “in use” taxonomy and nomenclature by published authors does not reflect the taxonomic reality. This author will not be unlawfully intimidated by Wolfgang Wüster and his gang of law-breaking thugs using unscientific methods to destabilize zoology as encapsulated in the hate rant of Kaiser et al.