Nematode-Trapping Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Nematode-Trapping Fungi Current Research in Environmental & Applied Mycology Nematode-Trapping Fungi Swe A1, Li J2, Zhang KQ2, Pointing SB1, Jeewon R1 and Hyde KD3* 1School of Biological Science, University of Hong Kong, Pokfulam Hong Kong 2Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, P. R. China 3School of Science, Mae Fah Luang University, Chiang Rai, Thailand Swe A, Li J, Zhang KQ, Pointing SB, Jeewon R, Hyde KD. 2011 – Nematode-Trapping Fungi. Current Research in Environmental & Applied Mycology 1(1), 1–26. This manuscript provides an account of nematode-trapping fungi including their taxonomy, phylogeny and evolution. There are four broad groups of nematophagous fungi categorized based on their mechanisms of attacking nematodes. These include 1) nematode-trapping fungi using adhesive or mechanical hyphal traps, 2) endoparasitic fungi using their spores, 3) egg parasitic fungi invading nematode eggs or females with their hyphal tips, and 4) toxin-producing fungi immobilizing nematodes before invasion The account briefly mentions fossil nematode-trapping fungi and looks at biodiversity, ecology and geographical distribution including factors affecting their distribution such as salinity. Nematode-trapping fungi occur in terrestrial, freshwater and marine habitats, but rarely occur in extreme environments. Fungal-nematodes interactions are discussed the potential role of nematode-trapping fungi in biological control is briefly reviewed. Although the potential for use of nematode-trapping fungi is high there have been few successes resulting in commercial products. Key words – Ascomycetes – Biocontrol – Biodiversity – Fossil fungi – Fungi – Nematodes – Phylogeny Article Received 4 June 2011 Accepted 6 June 2011 Published online 25 June 2011 *Corresponding author: Kevin D. Hyde – e-mail – [email protected] Table of contents Introduction 2 Taxonomy, phylogeny and evolution of nematode-trapping fungi 2 Background of generic classification 2 Phylogenetic significance and evolution of trapping devices 4 Ancient nematode-trapping fungi 4 Biodiversity of nematode-trapping fungi 4 Ecology, occurrence and geographical distribution 6 Factors affecting the distribution of NTF 6 Effect of salinity 7 Ecological speciation 7 Fungal-nematode interactions 8 Host recognition, adhesion, host specificity and infection process 8 1 Extracellular enzymes involved in nematode infestation process 10 Biological control of nematodes 10 Use of NTF to control animal gut nematodes 11 Use of NTF in traditional or natural biocontrol of plant nematodes 11 Using advance techniques 11 Commercialization of products 12 Introduction amongst mycologists. Many generic names There are four broad groups of nemato- have been given to nematode-trapping fungi phagous fungi categorized based on their but the basis on which species were circumscri- mechanisms of attacking nematodes (Liu et al. bed to different genera was unclear and sub- 2009). These include (1) nematode-trapping jective. Since 1930, nematode-trapping fungal fungi using adhesive or mechanical hyphal have been described and classified mostly in traps, (2) endoparasitic fungi using their spores, Arthrobotrys Corda, Dactylaria Sacc, and Dac- (3) egg parasitic fungi invading nematode eggs tylella Grove. or females with their hyphal tips, and (4) toxin- Corda (1839) established the genus Ar- producing fungi immobilizing nematodes throbotrys with A. superba Corda as the type before invasion (Kendrick et al. 2001, Liu et al. species. Characteristics of this genus are hya- 2009). line conidiophores which produce conidia The first nematode-trapping fungus to be asynchronously on short denticles at swollen described was Arthrobotrys oligospora Fresen. conidiogenous heads or clusters of pronounced in 1852, but at that time its predatory habit was denticles (De Hoog 1985). Conidia are subhya- unknown. The predatory habit was first obser- line, obovoidal or clavate and (0–)1(–6)-sep- ved 36 years later by Zopf (1888). Since nema- tate. Trapping devices are constricting rings, tode-trapping fungi have considerable potential adhesive nets, hyphae or adhesive knobs (De for biological control of nematodes, there have Hoog 1985). Due to these broad morphological been extensive studies and reviews on their criteria the delimitation from Arthrobotrys is taxonomy, phylogeny, biology, and ecology sometimes problematic, particularly in Dactyl- (Cooke 1963, Kerry 1987, Sayre & Walter ella species which form more than one or two 1991, Sikora 1992, Kerry & Hominick 2002, conidia on each conidiophore (Cooke & Morton et al. 2004, Dong & Zhang 2006, Dickinson 1965). Based on this reason, Van Sikora et al. 2007). In this review, aspects such Oorschot (1985) restricted Dactylella to as taxonomy, phylogeny, diversity, and eco- species with fusiform, multi-septate conidia, logy of nematode-trapping fungi and their while Arthrobotrys species generally have potential in use in biocontrol of nematodes are ovoidal to clavate, 0–3-septate conidia. Van reviewed. Oorschot (1985) recognized 28 species of Ar- throbotrys. Schenck et al. (1977) expanded the Taxonomy, phylogeny and evolution of genus to 47 species. After Schenck et al. (1977) nematode-trapping fungi transferring all predacious species formerly described in Dactylaria to Arthrobotrys, Dacty- Background of the generic classification laria was no longer tenable for nematode- Nematode-trapping fungi are a hetero- trapping species. Recent classification based geneous group of anamorphic ascomycetes mostly on DNA sequence data has resulted in where species are defined primarily based on the transfer of species characterized by adhe- conidial characteristics such as size, septation, sive networks to Arthrobotrys (Scholler et al. and type of conidiogenous cells (Oudemans, 1999). Currently, there are 120 records of 1885, Subramanian, 1963). This has resulted in Arthrobotrys species but this includes basio- considerable ambiguity and confusion in inter- nyms and synonyms (Index Fungorum, 2011). generic classification of these organisms. Since A more realistic estimate is 63 (Kirk et al. the discovery of predacious activity in Arthro- 2008). botrys oligospora (Zopf, 1888), nematode- Monacrosporium was introduced by trapping fungi have attracted much interest Oudemans (1885) with two species, Monacro- 2 Current Research in Environmental & Applied Mycology sporium elegans Oudem. and M. subtile genus in Index Fungorum (Index Fungorum, Oudem. This generic name has been used by 2011). The current names for most species in many authors for several species following the the genus are in Arthrobotrys (1) Dactylella (3) opinion of Oudemans (1885). Subramanian Gamsylella (4) and Monacrosporium (8) and (1964) later selected M. elegans as lectotype only seven species are listed under Dactylellina species for this genus, highlighting the inflated while the remaining are anamorphic Orbilia middle cell of the conidia as the distinguishing (Index Fungorum 2011) generic criterion, and transferred a large num- Drechslerella was described by ber of nematode-trapping fungi from Dacty- Subramanian (1964) based on the type species, lella species to Monacrosporium. Rubner Drechslerella acrochaeta (Drechsler) Subram. (1996) revised most predacious hyphomycetes Scholler et al. (1999) later revised and trans- in Dactylella and Monacrosporium to deli- fered all predacious species forming con- mitate between the two genera. Scholler et al. stricting rings to this genus. Fourteen names (1999), however, proposed a new genus are listed in this genus in Index Fungorum concept for predatory anamorphic Orbiliaceae (Index Fungorum 2011), while Kirk et al. and the genus Monacrosporium was discarded. (2008) estimated there are one species. Species Many nematode-trapping fungal species are Fungorum (2011) currently lists seven names homeless and Monacrosporium is used as their as anamorphic Orbilia, while the other species current name. Currently, 74 taxa are listed in are organized in Arthrobotrys (3), Dactylella Index Fungorum (Index Fungorum, 2011), (1), Geniculifera (1) and Monacrosporium (3). while Kirk et al. (2008) estimate there to be 68 Gamsylella was described by Scholler et species. al. (1999) based on G. arcuata (Scheuer & J. Based on results obtained from morpho- Webster) M. Scholler, Hagedorn & A. Rubner logical and molecular characters, Hagedorn & Scholler et al. (1999) proposed Gamsylella as a Scholler (1999) and Scholler et al (1999) new genus combining all predacious species proposed that nematode-trapping fungi should that formed adhesive columns and unstalked be organized in four genera: Dactylellina M. knob devices to this genus. Li et al. (2005) later Morelet characterized by stalked adhesive transferred those species to Arthrobotrys and knobs including species characterized by non- Yang & Liu (2006) combined this genus with constricting rings and stalked adhesive knobs; Dactylellina based on molecular phylogenetic Gamsylella M. Scholler, Hagedorn & A. analyses. Six taxa belonging to Gamsylella Rubner characterized by adhesive branches and were reported by Index Fungorum (2008) and unstalked knobs; Arthrobotrys characterized by Kirk et al. (2008). Nevertheless, a placement of adhesive networks; and Drechslerella Subram. this genus based on phylogenetic analyses still characterized by constricting rings. Li et al. remains in questioning and therefore it should (2005) emended genus Gamsylella and trans- be revaluated.
Recommended publications
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Castor, Pollux and Life Histories of Fungi'
    Mycologia, 89(1), 1997, pp. 1-23. ? 1997 by The New York Botanical Garden, Bronx, NY 10458-5126 Issued 3 February 1997 Castor, Pollux and life histories of fungi' Donald H. Pfister2 1982). Nonetheless we have been indulging in this Farlow Herbarium and Library and Department of ritual since the beginning when William H. Weston Organismic and Evolutionary Biology, Harvard (1933) gave the first presidential address. His topic? University, Cambridge, Massachusetts 02138 Roland Thaxter of course. I want to take the oppor- tunity to talk about the life histories of fungi and especially those we have worked out in the family Or- Abstract: The literature on teleomorph-anamorph biliaceae. As a way to focus on the concepts of life connections in the Orbiliaceae and the position of histories, I invoke a parable of sorts. the family in the Leotiales is reviewed. 18S data show The ancient story of Castor and Pollux, the Dios- that the Orbiliaceae occupies an isolated position in curi, goes something like this: They were twin sons relationship to the other members of the Leotiales of Zeus, arising from the same egg. They carried out which have so far been studied. The following form many heroic exploits. They were inseparable in life genera have been studied in cultures derived from but each developed special individual skills. Castor ascospores of Orbiliaceae: Anguillospora, Arthrobotrys, was renowned for taming and managing horses; Pol- Dactylella, Dicranidion, Helicoon, Monacrosporium, lux was a boxer. Castor was killed and went to the Trinacrium and conidial types that are referred to as being Idriella-like.
    [Show full text]
  • 2021.08.30.458191.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.30.458191; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Intrinsic variation in the vertically transmitted insect-specific core virome of Aedes aegypti 2 Author names: Coatsworth, H.1,2.3, Bozic, J3,4,5, Carrillo, J.3,6,8, Buckner, E. A.3,4,6, Rivers, A. 3 R.3,7, Dinglasan, R. R.1,2,3, and Mathias, D. K.3,4 4 Author affiliations: 5 1Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA 6 2Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University 7 of Florida, Gainesville, Florida, USA 8 3CDC Southeastern Center of Excellence in Vector Borne Diseases, Gainesville, Florida, USA 9 4Entomology & Nematology Department, Florida Medical Entomology Laboratory, Institute of 10 Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, USA 11 5Department of Entomology, the Center for Infectious Disease Dynamics, and the Huck 12 Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, USA. 13 6Manatee County Mosquito Control District, Palmetto, Florida, USA 14 7Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States 15 Department of Agriculture, Gainesville, Florida, USA 16 8Lacerta Therapeutics, Production and Development, Alachua Florida, USA 17 Corresponding Author: D. K. Mathias, University of Florida, [email protected] 18 19 Abstract 20 Since 2009, local outbreaks of dengue (serotypes 1-3) mediated by Aedes aegypti mosquitoes have 21 occurred in the United States, particularly in Florida (FL).
    [Show full text]
  • The Mosquitoes of New Zealand and Their Animal Disease Significance
    The mosquitoes of New Some mosquito-borne animal pathogens do occur in Zealand and their animal New Zealand but this country is considered free from any that are economically significant. disease significance However, there is a threat of new species of exotic mosquitoes Mosquito type and distribution and/or exotic Species present: Of the 3,500 mosquito species recognised mosquito-borne (1) worldwide , New Zealand has only 16 (Table 1), four of which are pathogens becoming introduced. Culex quinquefasciatus, Aedes australis and Aedes established here. notoscriptus are considered to have been introduced in the nineteenth and early twentieth centuries(2) (3) (4). Aedes Peter Holder camptorhynchus has recently established in Napier and is the subject of an eradication campaign. The remaining 12 species are indigenous. contact, vector competence (the efficiency of a particular mosquito to transmit a given pathogen), mosquito abundance, and feeding Distribution: The distribution of mosquito species within New behaviour(12) all influence transmission. In addition, there may be Zealand is shown in Table 1. Culex pervigilans is the most wide regional intra-specific variation in vector competence, as well as (2) spread mosquito species in New Zealand and it utilises a wide variation in the ‘compatibility’ of various strains of a pathogen with (5) (6) range of larval habitats . Most of our remaining mosquitoes have a vector. restricted distributions and/or habitats. Cx quinquefasciatus and Ae notoscriptus have remained apparently stable around their Endemic diseases original sites of introduction in Northland and Auckland from their Mosquitoes appear to transmit very few diseases in New Zealand times of introduction (around 1830 and 1900 respectively) until the (Table 1).
    [Show full text]
  • I MODELLING the DEMOGRAPHY and CONTROL of DISEASE
    MODELLING THE DEMOGRAPHY AND CONTROL OF DISEASE-CARRYING TROPICAL MOSQUITOES IN NORTHERN AUSTRALIA By Siobhan Clare de Little A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Adelaide October 2011 i ii Statement of Originality I, Siobhan Clare de Little certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. *DE LITTLE, S. C., BOWMAN, D. M. J. S., WHELAN P. I., BROOK, B. W. & BRADSHAW, C. J. A. 2009. Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency. Environmental Entomology, 38:4, 1013-1021.
    [Show full text]
  • Mosquitoes of Tasmania and Bass Steait Islands
    MOSQUITOES OF TASMANIA AND BASS STEAIT ISLANDS N. V. DOBROTWORSKY Department of Zoology, University of Melbourne (Plates iv-v) [Read 29 June, 1966] Synopsis Twenty-nine species have been recorded from Tasmania, twenty-two from Flinders Island, ten from King Island and four from other small islands of Bass Strait. A new species, Anopheles tasmaniensis, and the life history of Guliseta weindorferi (Edw.) are described. The Tasmanian mosquito fauna is closely related to that of southern Victoria. All Tasmanian species either occur in Victoria or have close relatives there. The endemic Guliseta weindorferi is closely related to G. otwayensis Dobr., and Aedes cunabulanus Edw. belongs to a group of the subgenus Ochlerotatus which is well represented in Victoria. Two main elements are represented in the Tasmanian fauna : the southern- Bassian and the northern. The Bassian element is represented by eleven species of Ochlerotatus, three species of Guliseta and one of the apiculis complex of Neoculex. The Bassian element may have originated in the tropics and subsequently spread to the northern and the southern temperate regions, being progressively displaced further from the tropics by later evolving groups. The northern element is represented in Tasmania by fourteen species. Species well adapted to cool conditions are widespread but others are confined to the warmer coastal areas or to warmer habitats. The majority of Tasmanian species are forest mosquitoes and since these have only a restricted ability to disperse across open spaces, it seems that Tasmania received most of the mosquito fauna before separation from the mainland. However, the species which breed in the coastal regions or in the open country may have dispersed to Tasmania, after separation, by the chain of the Bass Strait islands.
    [Show full text]
  • Beauveria Bassiana
    UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA MICOVIRUS ASOCIADOS A LOS HONGOS ENDOFÍTICOS Y ENTOMOPATÓGENOS Tolypocladium cylindrosporum y Beauveria bassiana Noemí Herrero Asensio 2011 UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA MICOVIRUS ASOCIADOS A LOS HONGOS ENDOFÍTICOS Y ENTOMOPATÓGENOS Tolypocladium cylindrosporum y Beauveria bassiana Memoria presentada por NOEMÍ HERRERO ASENSIO para optar al grado de DOCTORA EN BIOLOGÍA Salamanca, a __ de marzo de 2011 DR. ÍÑIGO ZABALGOGEAZCOA GONZÁLEZ, INVESTIGADOR CIENTÍFICO DEL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC), EN EL INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA DE SALAMANCA, CERTIFICA Que la memoria titulada “MICOVIRUS ASOCIADOS A LOS HONGOS ENDOFÍTICOS Y ENTOMOPATÓGENOS Tolypocladium cylindrosporum y Beauveria bassiana”, presentada por Dña. Noemí Herrero Asensio para optar al grado de Doctora en Biología por la Universidad de Salamanca, ha sido realizada bajo mi dirección, en el Departamento de Estrés Abiótico del Instituto de Recursos Naturales y Agrobiología de Salamanca del Consejo Superior de Investigaciones Científicas (CSIC). Y para autorizar su presentación y evaluación por el tribunal correspondiente, expide y firma el presente certificado en Salamanca, a __ de marzo de 2011. Fdo. Dr. Iñigo Zabalgogeazcoa González DR. JOSÉ MARÍA DÍAZ MÍNGUEZ, PROFESOR TITULAR DEL DEPARTAMENTO DE MICROBIOLOGÍA Y GENÉTICA DE LA UNIVERSIDAD DE SALAMANCA, CERTIFICA Que la memoria titulada “MICOVIRUS ASOCIADOS A LOS HONGOS ENDOFÍTICOS Y ENTOMOPATÓGENOS Tolypocladium cylindrosporum y Beauveria bassiana”, presentada por Dña. Noemí Herrero Asensio para optar al grado de Doctora en Biología por la Universidad de Salamanca, ha sido realizada bajo la dirección del Dr. Iñigo Zabalgogeazcoa González, en el Departamento de Estrés Abiótico del Instituto de Recursos Naturales y Agrobiología de Salamanca del Consejo Superior de Investigaciones Científicas (CSIC), y bajo mi tutela.
    [Show full text]
  • Evolution of the Insects
    CY501-C01[001-041].qxd 2/14/05 4:05 PM Page 1 quark11 Quark11:Desktop Folder: 1 DiDiversityversity and Evolution and Evolution cockroaches, but this also brings up a very important aspect INTRODUCTION about fossils, which is their proper interpretation. Evolution begets diversity, and insects are the most diverse Fossil “roachoids” from 320 MYA to 150 MYA were actually organisms in the history of life, so insects should provide pro- early, primitive relatives of living roaches that retained a found insight into evolution. By most measures of evolution- large, external ovipositor and other primitive features of ary success, insects are unmatched: the longevity of their lin- insects (though they did have a shield-like pronotum and eage, their species numbers, the diversity of their forewings similar to modern roaches). To interpret roachoids adaptations, their biomass, and their ecological impact. The or any other fossil properly, indeed the origin and extinction challenge is to reconstruct that existence and explain the of whole lineages, it is crucial to understand phylogenetic unprecedented success of insects, knowing that just the relationships. The incompleteness of fossils in space, time, veneer of a 400 MY sphere of insect existence has been peeled and structure imposes challenges to understanding them, away. which is why most entomologists have avoided studying fos- sil insects, even beautifully preserved ones. Fortunately, there Age. Insects have been in existence for at least 400 MY, and if has never been more attention paid to the phylogenetic rela- they were winged for this amount of time (as evidence sug- tionships of insects than at present (Kristensen, 1975, 1991, gests), insects arguably arose in the Late Silurian about 420 1999a; Boudreaux, 1979; Hennig, 1981; Klass, 2003), includ- MYA.
    [Show full text]
  • A Reevaluation of Predatory Orbiliaceous Fungi. II. a New Generic Concept
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at A reevaluation of predatory orbiliaceous fungi. II. A new generic concept Markus Scholler1, Gregor Hagedorn2 & A. Rubner1 Fachrichtung Biologie, Mykologisches Labor, Universität Greifswald, Jahn-Str. 15, 17487 Greifswald, Germany 2Institut für Pflanzenvirologie, Mikrobiologie und Biologische Sicherheit, Biologische Bundesanstalt für Land- und Forstwirtschaft, Königin-Luise-Str. 19, 14195 Berlin, Germany M. Scholler, G. Hagedorn & A. Rubner (1999). A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. - Sydowia 51(1): 89-113. A new genus concept is proposed for predatory anamorphic Orbiliaceae in which the trapping device is the main morphological criterion for the delimitation of the genera. Molecular, ecological, physiological, biological, and further mor- phological features are taken into account as well. Following the groups identified by Hagedorn & Scholler (1999), these predatory fungi are divided into four genera: Arthrobotrys Corda forming adhesive networks, Drechslerella Subram. forming constricting rings, Dactylellina M. Morelet forming stalked adhesive knobs, and Gamsylella gen. nov. for species producing adhesive columns and unstalked knobs. Eighty-two species are accepted, for 51 of which new combinations are proposed. Keywords: Nematophagous fungi, Orbiliaceae, Arlhrobolrys, Daclylellina, Drechslerella, Gamsylella gen. nov, trapping devices, taxonomy. Present generic and phylogenetic concepts for predatory
    [Show full text]
  • Brust Et Al 1998.Pdf
    Color profile: Disabled Composite Default screen 1236 Molecular systematics, morphological analysis, and hybrid crossing identify a third taxon, Aedes (Halaedes) wardangensis sp.nov., of the Aedes (Halaedes) australis species-group (Diptera: Culicidae) Reinhart A. Brust, J. William O. Ballard, Felice Driver, Diana M. Hartley, Nora J. Galway, and John Curran Abstract: Phylogenetic and morphological analyses, male morphology, and hybrid crossing indicate that a population from Wardang Island, South Australia, is distinct from the monophyletic series of populations of Aedes (Halaedes) australis (Erichson) 1842 from Victoria, Tasmania, New South Wales, and New Zealand. The name Aedes (Halaedes) wardangensis has been assigned to the new species. Phylogenetic analysis of DNA sequences from the cytochrome oxidase II and internal transcribed spacer loci support the resurrection of Aedes (Halaedes) ashworthi Edwards, 1921 (Brust and Mahon, 1997). Aedes ashworthi is known only from Western Australia and was found to be infertile when crossed with Ae. wardangensis from South Australia and Ae. australis from New Zealand. The hybrid of Ae. australis from New South Wales × Ae. australis from New Zealand was fertile for three generations, documenting these as conspecific. Résumé : Des analyses phylogénétiques et morphologiques, la morphologie des mâles et le croisement d’hybrides indiquent que la population de l’île de Wardang, en Australie méridionale, est distincte de la série monophylétique de populations d’Aedes (Halaedes) australis (Erichson) 1842 de Victoria, de Tasmanie, de Nouvelle-Galles du Sud et de Nouvelle-Zélande. Le nom Aedes (Halaedes) wardangensis a été assigné à la nouvelle espèce. L’analyse phylogénétique des séquences d’ADN de la citychrome oxydase II et de l’espaceur interne transcrit justifient la résurrection du taxon Aedes (Halaedes) ashworthi Edwards, 1921 (Brust et Mahon, 1997).
    [Show full text]
  • The Biology and Control of Mosquitoes in California
    The Biology and Control of Mosquitoes in California Vector Control Technician Certification Training Manual Category B 1/10 Instructions This study guide is meant to replace the manual The Biology and Control of Mosquitoes in California. • You can navigate through the guide at your own pace and in any order. • Click on the purple home button to return to the main menu. • Click on the gray return button to go to the chapter menu of the current slide. • Click on the button if you want to access the glossary. Important terms are highlighted in red and appear in the glossary. The link to the glossary can be found at the beginning of each chapter. 2/10 Main Menu Chapter 1: Biology of Mosquitoes Chapter 2: Ecology of Mosquitoes Chapter 3: Public Health Importance of Mosquitoes Chapter 4: Classification and Identification of Mosquitoes Chapter 5: Principles of Mosquito Control Chapter 6: Chemical Control of Mosquitoes Chapter 7: Physical Control of Mosquitoes Chapter 8: Biological Control of Mosquitoes Chapter 9: Mosquito Control in California Chapter 10: Surveillance for Mosquitoes and Mosquito-borne Diseases Chapter 11: Public Relations in Mosquito Control Appendix 1: Glossary 2 :Conversions of Units and Formulas used with Insecticides 3 :Additional Information 3/10 Introduction • Arthropods are a huge group of invertebrate animals (animals without backbones) that include insects, arachnids (ticks, mites, and spiders), crustaceans (crabs, lobsters, and shrimp) and others. • There are millions of species of arthropods, all sharing characteristics of a hard exoskeleton and jointed legs. • Many arthropods are pests of one kind or another, especially on agricultural crops and farm animals.
    [Show full text]
  • Interspecific and Host-Related Gene Expression Patterns in Nematode
    Andersson et al. BMC Genomics 2014, 15:968 http://www.biomedcentral.com/1471-2164/15/968 RESEARCH ARTICLE Open Access Interspecific and host-related gene expression patterns in nematode-trapping fungi Karl-Magnus Andersson1, Dharmendra Kumar2, Johan Bentzer1, Eva Friman1, Dag Ahrén3 and Anders Tunlid1* Abstract Background: Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). Results: The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain.
    [Show full text]