Unleashing Floret Fertility in Wheat Through the Mutation of a Homeobox Gene

Total Page:16

File Type:pdf, Size:1020Kb

Unleashing Floret Fertility in Wheat Through the Mutation of a Homeobox Gene Unleashing floret fertility in wheat through the mutation of a homeobox gene Shun Sakumaa,b,c,1, Guy Goland, Zifeng Guob, Taiichi Ogawaa,e, Akemi Tagiria, Kazuhiko Sugimotoa,f, Nadine Bernhardtg, Jonathan Brassacg, Martin Mascherh,i, Goetz Henselj, Shizen Ohnishik, Hironobu Jinnok, Yoko Yamashital, Idan Ayalond, Zvi Pelegd, Thorsten Schnurbuschb,m,1, and Takao Komatsudaa,f,1 aAgrogenomics Research Center, National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan; bIndependent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; cFaculty of Agriculture, Tottori University, 680-8553 Tottori, Japan; dThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel; eInstitute of Agrobiological Sciences, National Agriculture and Food Research Organization, 305-8518 Tsukuba, Japan; fInstitute of Crop Science, National Agriculture and Food Research Organization, 305-8518 Tsukuba, Japan; gResearch Group Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; hIndependent Research Group Domestication Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; iGerman Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany; jResearch Group Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; kKitami Agricultural Experiment Station, Hokkaido Research Organization, 099-1496 Kunneppu, Japan; lCentral Agricultural Experiment Station, Hokkaido Research Organization, 069-1395 Naganuma, Japan; and mInstitute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany Edited by Sarah Hake, University of California, Berkeley, CA, and approved January 24, 2019 (received for review September 7, 2018) Floret fertility is a key determinant of the number of grains per the three subgenomes B, A, and D (8, 9). The first event led to inflorescence in cereals. During the evolution of wheat (Triticum the formation of the allotetraploid wild emmer (Triticum turgidum sp.), floret fertility has increased, such that current bread wheat ssp. dicoccoides, genome formula BBAA) 0.36 to 0.5 Mya. Its A (Triticum aestivum) cultivars set three to five grains per spikelet. subgenome was inherited from the diploid species Triticum urartu However, little is known regarding the genetic basis of floret fer- and its B subgenome from Aegilops speltoides or an extinct tility. The locus Grain Number Increase 1 (GNI1) is shown here to closely related species. Domesticated emmer (Triticum tur- be an important contributor to floret fertility. GNI1 evolved in the gidum ssp. dicoccum) was selected by early farmers from PLANT BIOLOGY Triticeae through gene duplication. The gene, which encodes a stands of wild emmer and is the progenitor of modern durum homeodomain leucine zipper class I (HD-Zip I) transcription factor, wheat, currently the most widely cultivated tetraploid wheats. was expressed most abundantly in the most apical floret primordia The second polyploidization event, which occurred ∼7,000 y and in parts of the rachilla, suggesting that it acts to inhibit rachilla ago, involved domesticated tetraploid wheat and the D sub- growth and development. The level of GNI1 expression has de- genome donor Aegilops tauschii. As the ploidy level increased, creased over the course of wheat evolution under domestication, the spikes evolved to produce a larger number of florets per leading to the production of spikes bearing more fertile florets and spikelet: Diploid wheats (T. urartu and Triticum monococcum) setting more grains per spikelet. Genetic analysis has revealed that GNI-A1 the reduced-function allele contributes to the increased Significance number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 Grain number is a key determinant of cereal grain yield, but its allele out-yielded WT allele carriers under field conditions. The underlying genetic basis in wheat remains undefined. This data show that gene duplication generated evolutionary novelty study demonstrates a direct association between increased affecting floret fertility while mutations favoring increased grain floret fertility, higher grain number per spike, and higher plot GNI1 production have been under selection during wheat evolution yields of field-grown wheat. The gene, encoding an HD- under domestication. Zip I transcription factor, was identified as responsible for in- creased floret fertility. The WT allele acts specifically during rachilla development, with its product serving to lower grain floret fertility | grain number | duplication | HD-Zip I transcription factor | wheat yield potential; in contrast, the reduced-function variant in- creased both floret and grain number. GNI1 evolved through gene duplication in the Triticeae, and its mutations have been he tribe Triticeae (subfamily Pooideae, family Poaceae) en- ∼ under parallel selection in both wheat and barley over the Tcompasses 30 genera and 360 species, including the eco- course of domestication. nomically important cereal crops bread wheat (Triticum aestivum), durum wheat (Triticum turgidum ssp. durum), barley (Hordeum Author contributions: S.S., G.G., Z.P., T.S., and T.K. designed research; S.S., G.G., Z.G., T.O., vulgare), and rye (Secale cereale) (1). Triticeae plants produce an A.T., K.S., N.B., J.B., G.H., S.O., H.J., Y.Y., I.A., and Z.P. performed research; S.S. and M.M. unbranched inflorescence, referred to as a spike. Whereas the ma- analyzed data; and S.S., T.S., and T.K. wrote the paper. jority of species, including wheat, develop a single spikelet on each The authors declare no conflict of interest. rachis node, some species produce two or more (2). The wheat spike This article is a PNAS Direct Submission. is made up of a number of spikelets, with a terminal spikelet at its This open access article is distributed under Creative Commons Attribution-NonCommercial- apex; each spikelet generates an indeterminate number of florets NoDerivatives License 4.0 (CC BY-NC-ND). attached to a secondary axis, the rachilla (3, 4). The number of grains Data deposition: Gene sequences generated in this study have been deposited in the DNA set per spikelet is determined by the fertility of each floret (5, 6). At Data Bank of Japan (DDBJ) (accession nos. AB711370–AB711394 and AB711888– AB711913) and in the NCBI GenBank database (accession nos. MH134165–MH134483). the white anther stage, a wheat spikelet normally produces up to 12 The RNA-seq data have been deposited in the European Nucleotide Archive (accession floret primordia (Fig. 1A); however, during development, more than no. PRJEB25119). 70% of the florets abort (6, 7). Despite its importance for grain 1To whom correspondence may be addressed. Email: [email protected], number determination and the potential for grain yield improvement, [email protected], or [email protected]. the genetic basis of floret fertility in wheat is largely unknown. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Two polyploidization events have been responsible for the 1073/pnas.1815465116/-/DCSupplemental. appearance of bread wheat, an allohexaploid which harbors www.pnas.org/cgi/doi/10.1073/pnas.1815465116 PNAS Latest Articles | 1of6 Downloaded by guest on September 28, 2021 LDN produced 2.4 (Fig. 2A). The increased grain number per A sm BCD f7 spikelet in LDN was largely driven by the higher number of f5 f6 f3 f4 f5 grains set in the basal and central parts of the spike (Fig. 2B). A f2 f4 f1 f3 f2 f1 f2 single major QTL, associated with a log10 odds (LOD) score of gl f1 f3 f4 gl 18.71 was mapped to chromosome 2AL; it accounted for 61% of f1 f2 gl gl gl gl gl gl the phenotypic variance (Fig. 2C). To further narrow the target genomic region, a backcross recombinant line population was E FGHf6 f5 f5 developed, which allowed the locus to be mendelized as the gene f4 f4 Grain Number Increase 1-A (GNI-A1) (Fig. 2D). Fine mapping f3 f3 f3 f3 f2 located GNI-A1 within a 5.4-Mbp region which harbors 26 pu- f1 f2 f2 f2 f1 f1 f1 tative genes, including one encoding an HD-Zip I transcription gl gl gl gl gl gl gl gl factor, the closest wheat homolog to the barley Six-rowed spike 1 gene (vrs1)(SI Appendix, Table S1) (21). A sequence comparison Fig. 1. Structure of the wheat spikelet. (A) A schematic model illustrating of the two parental GNI-A1 alleles revealed a polymorphism the spike at the white anther stage. (B–D) The diploid progenitors of bread responsible for a single amino acid substitution (N105Y: 105 wheat: (B) Triticum urartu,(C) Aegilops speltoides,(D) Ae. tauschii.(E–G) asparagine to tyrosine) within the highly conserved homeo- Tetraploid wheats: (E) wild emmer (T. turgidum ssp. dicoccoides), (F) do- domain (Fig. 2E). The recombinant plants carrying the LDN mesticated emmer (T. turgidum ssp. dicoccum), (G) durum (T. turgidum ssp. allele (generating the 105Y variant) displayed a significantly durum). (H) Hexaploid bread wheat (T. aestivum). Fertile florets are marked in yellow. f, floret; gl, glume; sm, spikelet meristem. higher grain number per spikelet than those carrying the DIC-2A allele (105N variant, ancestral) (Fig. 2F). Notably, the mutation in LDN was identical to that found in the barley six-rowed spike set one or two grains per spikelet, tetraploid wheats two or three, mutant Int-d.41 allele at vrs1 (21), suggesting that the function of and hexaploid wheats more than three (Fig. 1 B–H) (10). the resulting HD-Zip I protein was lost or attenuated in LDN. The genetic diversity of grass inflorescences determines its To verify the inhibitory role, GNI-A1 was silenced using RNA reproduction and therefore, the resulting number of branches, interference (RNAi).
Recommended publications
  • Identification of Cereal Remains from Archaeological Sites 2Nd Edition 2006
    Identification of cereal remains from archaeological sites 2nd edition 2006 Spikelet fork of the “new glume wheat” (Jones et al. 2000) Stefanie JACOMET and collaborators Archaeobotany Lab IPAS, Basel University English translation partly by James Greig CEREALS: CEREALIA Fam. Poaceae /Gramineae (Grasses) Systematics and Taxonomy All cereal species belong botanically (taxonomically) to the large family of the Gramineae (Poaceae). This is one of the largest Angiosperm families with >10 000 different species. In the following the systematics for some of the most imporant taxa is shown: class: Monocotyledoneae order: Poales familiy: Poaceae (= Gramineae) (Süssgräser) subfamily: Pooideae Tribus: Triticeae Subtribus: Triticinae genera: Triticum (Weizen, wheat); Aegilops ; Hordeum (Gerste; barley); Elymus; Hordelymus; Agropyron; Secale (Roggen, rye) Note : Avena and the millets belong to other Tribus. The identification of prehistoric cereal remains assumes understanding of different subject areas in botany. These are mainly morphology and anatomy, but also phylogeny and evolution (and today, also genetics). Since most of the cereal species are treated as domesticated plants, many different forms such as subspecies, varieties, and forms appear inside the genus and species (see table below). In domesticates the taxonomical category of variety is also called “sort” (lat. cultivar, abbreviated: cv.). This refers to a variety which evolved through breeding. Cultivar is the lowest taxonomic rank in the domesticated plants. Occasionally, cultivars are also called races: e.g. landraces evolved through genetic isolation, under local environmental conditions whereas „high-breed-races“ were breed by strong selection of humans. Anyhow: The morphological delimitation of cultivars is difficult, sometimes even impossible. It needs great experience and very detailed morphological knowledge.
    [Show full text]
  • Taxonomy and Phylogeny in Triticeae: a Historical Review and Current Status
    Advances in Plants & Agriculture Research Review Article Open Access Taxonomy and phylogeny in Triticeae: a historical review and current status Abstract Volume 3 Issue 5 - 2016 The Triticeae is an economically important tribe within the Poaceae. Because a number of cereal crops and forage grasses belong to the tribe it has attracted much scientific Mohannad G Al–Saghir attention covering many species: taxonomy, phylogeny, genetics, cytogenetic, genome Department of Environmental and Plant Biology, Ohio analyses (crossing ability and chromosome pairing), isoenzymes, molecular biology University, USA (RFLP, RAPD, PCR sequencing) and breeding. This paper contains a brief historical outline of the taxonomy of the tribe. Phylogenetic hypotheses regarding this tribe Correspondence: Mohannad G Al–Saghir, Department of inferred from different methods, techniques and approaches, are reviewed. The Environmental and Plant Biology, Ohio University, Zanesville, different phylogenies are discussed and compared and conflicts are elucidated. Ohio, USA, Email al–[email protected] Keywords: triticeae, phylogeny, taxonomy, poaceae, perennial species, durum Received: April 23, 2016 | Published: May 10, 2016 wheat, phylogenies, genetic diversity, cytogenetics, molecular biology, chromosomes, perennial, caespitose, thizomatous species Introduction as cited above. We can therefore conclude that the most appropriate outgroup for the tribe will be Bromus. The tribe Triticeae Dum is economically the most important tribe in the grass family (Poaceae). It encompasses between 350 and 500 Definition annual or perennial species,1–3 including the important cereal crops wheat (Triticum aestivium L.), durum wheat (T. turgidum sup. durum The Triticeae encompasses annual and perennial, caespitose or (Desf. MacKay) barley (Hordeum vulgare L.), rye (Secale cereal L.) thizomatous species.
    [Show full text]
  • Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences
    d i v e r s i t y , p h y l o g e n y , a n d e v o l u t i o n i n t h e monocotyledons e d i t e d b y s e b e r g , p e t e r s e n , b a r f o d & d a v i s a a r h u s u n i v e r s i t y p r e s s , d e n m a r k , 2 0 1 0 Phylogenetics of Stipeae (Poaceae: Pooideae) Based on Plastid and Nuclear DNA Sequences Konstantin Romaschenko,1 Paul M. Peterson,2 Robert J. Soreng,2 Núria Garcia-Jacas,3 and Alfonso Susanna3 1M. G. Kholodny Institute of Botany, Tereshchenkovska 2, 01601 Kiev, Ukraine 2Smithsonian Institution, Department of Botany MRC-166, National Museum of Natural History, P.O. Box 37012, Washington, District of Columbia 20013-7012 USA. 3Laboratory of Molecular Systematics, Botanic Institute of Barcelona (CSIC-ICUB), Pg. del Migdia, s.n., E08038 Barcelona, Spain Author for correspondence ([email protected]) Abstract—The Stipeae tribe is a group of 400−600 grass species of worldwide distribution that are currently placed in 21 genera. The ‘needlegrasses’ are char- acterized by having single-flowered spikelets and stout, terminally-awned lem- mas. We conducted a molecular phylogenetic study of the Stipeae (including all genera except Anemanthele) using a total of 94 species (nine species were used as outgroups) based on five plastid DNA regions (trnK-5’matK, matK, trnHGUG-psbA, trnL5’-trnF, and ndhF) and a single nuclear DNA region (ITS).
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Phylogenetic Analyses Reveal the Shady History of C4 Grasses Erika J
    Phylogenetic analyses reveal the shady history of C4 grasses Erika J. Edwardsa,1 and Stephen A. Smithb aDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; and bNational Evolutionary Synthesis Center, Durham, NC 27705 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved December 31, 2009 (received for review August 24, 2009) Grasslands cover more than 20% of the Earth's terrestrial surface, has provided a strong selection pressure for C4 evolution in and their rise to dominance is one of the most dramatic events of eudicots (4). Grasses have long been viewed as an interesting biome evolution in Earth history. Grasses possess two main photo- exception to this pattern (9). Significant positive correlations synthetic pathways: the C3 pathway that is typical of most plants between C4 grass abundance and growing season temperature and a specialized C4 pathway that minimizes photorespiration and have been documented at both continental and regional scales thus increases photosynthetic performance in high-temperature (10–13); C4 grasses dominate tropical grasslands and savannas and/or low-CO2 environments. C4 grasses dominate tropical and but are virtually absent from cool-temperate grasslands and subtropical grasslands and savannas, and C3 grasses dominate the steppes. Furthermore, both experimental measurements of world's cooler temperate grassland regions. This striking pattern photosynthetic light use efficiency (termed “quantum yield”), has been attributed to C4 physiology, with the implication that the and predictions of leaf models of C3 and C4 photosynthesis evolution of the pathway enabled C4 grasses to persist in warmer provide strong evidence that C4 grasses outperform C3 grasses at climates than their C3 relatives.
    [Show full text]
  • (Poaceae, Pooideae) with Descriptions and Taxonomic Names
    A peer-reviewed open-access journal PhytoKeysA key 126: to 89–125 the North (2019) American genera of Stipeae with descriptions and taxonomic names... 89 doi: 10.3897/phytokeys.126.34096 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research A key to the North American genera of Stipeae (Poaceae, Pooideae) with descriptions and taxonomic names for species of Eriocoma, Neotrinia, Oloptum, and five new genera: Barkworthia, ×Eriosella, Pseudoeriocoma, Ptilagrostiella, and Thorneochloa Paul M. Peterson1, Konstantin Romaschenko1, Robert J. Soreng1, Jesus Valdés Reyna2 1 Department of Botany MRC-166, National Museum of Natural History, Smithsonian Institution, Washing- ton, DC 20013-7012, USA 2 Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo, C.P. 25315, México Corresponding author: Paul M. Peterson ([email protected]) Academic editor: Maria Vorontsova | Received 25 February 2019 | Accepted 24 May 2019 | Published 16 July 2019 Citation: Peterson PM, Romaschenko K, Soreng RJ, Reyna JV (2019) A key to the North American genera of Stipeae (Poaceae, Pooideae) with descriptions and taxonomic names for species of Eriocoma, Neotrinia, Oloptum, and five new genera: Barkworthia, ×Eriosella, Pseudoeriocoma, Ptilagrostiella, and Thorneochloa. PhytoKeys 126: 89–125. https://doi. org/10.3897/phytokeys.126.34096 Abstract Based on earlier molecular DNA studies we recognize 14 native Stipeae genera and one intergeneric hybrid in North America. We provide descriptions, new combinations, and 10 illustrations for species of Barkworthia gen. nov., Eriocoma, Neotrinia, Oloptum, Pseudoeriocoma gen. nov., Ptilagrostiella gen. nov., Thorneochloa gen. nov., and ×Eriosella nothogen. nov. The following 40 new combinations are made: Barkworthia stillmanii, Eriocoma alta, E. arida, E.
    [Show full text]
  • Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad De Zaragoza, Huesca, Spain
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 31 2007 A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad de Zaragoza, Huesca, Spain Pedro Torrecilla Universidad Central de Venezuela, Maracay, Venezuela José A. López-Rodríguez Universidad de Zaragoza, Huesca, Spain Jochen Müller Friedrich-Schiller-Universität, Jena, Germany Clive A. Stace University of Leicester, Leicester, UK Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Catalán, Pilar; Torrecilla, Pedro; López-Rodríguez, José A.; Müller, Jochen; and Stace, Clive A. (2007) "A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 31. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/31 Aliso 23, pp. 380–405 ᭧ 2007, Rancho Santa Ana Botanic Garden A SYSTEMATIC APPROACH TO SUBTRIBE LOLIINAE (POACEAE: POOIDEAE) BASED ON PHYLOGENETIC EVIDENCE PILAR CATALA´ N,1,6 PEDRO TORRECILLA,2 JOSE´ A. LO´ PEZ-RODR´ıGUEZ,1,3 JOCHEN MU¨ LLER,4 AND CLIVE A. STACE5 1Departamento de Agricultura, Universidad de Zaragoza, Escuela Polite´cnica Superior de Huesca, Ctra. Cuarte km 1, Huesca 22071, Spain; 2Ca´tedra de Bota´nica Sistema´tica, Universidad Central de Venezuela, Avenida El Limo´n s. n., Apartado Postal 4579, 456323 Maracay, Estado de Aragua,
    [Show full text]
  • Late Cretaceous Origin of the Rice Tribe Provides Evidence for Early Diversification in Poaceae
    ARTICLE Received 9 Jun 2010 | Accepted 17 Aug 2011 | Published 20 Sep 2011 DOI: 10.1038/ncomms1482 Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae V. Prasad1, C.A.E. Strömberg2, A.D. Leaché2, B. Samant3, R. Patnaik4, L. Tang5, D.M. Mohabey6, S. Ge5 & A. Sahni7 Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67–65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern sub- clades PACMAD (Panicoideae–Aristidoideae–Chloridoideae–Micrairoideae–Arundinoideae– Danthonioideae) and BEP (Bambusoideae–Ehrhartoideae–Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. 1 Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. 2 Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA. 3 Postgraduate Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440001, India. 4 Centre for Petroleum and Applied Geology, Panjab University, Chandigarh 160014, India.
    [Show full text]
  • Hilu Paper (New)
    KEW BULLETIN 62: 355–373 (2007) 355 A century of progress in grass systematics Khidir W. Hilu1 Summary. This paper presents an overview of progress in grass systematics with a focus on the past century and assesses its current status and future outlook. In concert with systematic biology, progress in grass systematics has gone through some leaps caused by the introduction of new approaches or emphasis on existing ones. Chromosome cytology, anatomy and chemistry provided useful information, but major recent contributions have come from advances in bioinformatics and molecular biology. Consequently, grass systematics has moved from an initial intuitive classification and phylogenetics to one incorporating analytical phenetic approaches, and culminating in the current stage of analytic phylogeny. As a result, a refined picture of grass phylogeny is emerging with good resolution at the base, but the tree lacks robustness in some places such as the monophyly of the “BEP” subfamilies and the relationships within the PACCAD clade. Systematic structure of a number of subfamilies is better understood now, but further studies are needed. With the rapid advancement in molecular systematic and bioinformatic tools, and in conjunction with a wealth of literature available on structural characters, a more refined picture of grass taxonomy and evolution is expected. However, caution needs to be exercised in our interpretations to avoid hasty decisions that can translate into regress rather than progress. This is an exciting time in the history of grass systematics and, undoubtedly, is a period of collaborative rather than individual effort. Key words. Poaceae, grasses, systematics, phylogenetics, history, evolution. Introduction valuable resources used in furthering our Although the c.
    [Show full text]
  • (Poaceae) and Characterization
    EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN SETARIA VIRIDIS L. P. BEAUV. By MICHAEL P. MALAHY Bachelor of Science in Biology University of Central Oklahoma Edmond, Oklahoma 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2012 EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN WEEDY GREEN MILLET ( SETARIA VIRIDIS L. P. BEAUV.) Thesis Approved: Dr. Andrew Doust Thesis Adviser Dr. Mark Fishbein Dr. Linda Watson Dr. Sheryl A. Tucker Dean of the Graduate College I TABLE OF CONTENTS Chapter Page I. Evolutionary survey of vegetative branching across the grass family (poaceae) ... 1 Introduction ................................................................................................................... 1 Plant Architecture ........................................................................................................ 2 Vascular Plant Morphology ......................................................................................... 3 Grass Morphology ....................................................................................................... 4 Methods .......................................................................................................................
    [Show full text]
  • "Poaceae (Gramineae)"
    Poaceae (Gramineae) Introductory article Paul M Peterson, Smithsonian Institution, Washington DC, USA Article Contents . Economically Important Species . Morphology . History and Phylogeny . Ecology Online posting date: 20th September 2013 The grass family (Poaceae or Gramineae) is the fourth beer. Rice originated in southeastern Asia and can be called largest flowering plant family and contains approxi- the world’s most important crop, because it is estimated mately 11 000 species in nearly 800 genera worldwide. We that over 200 million tonnes of rice are consumed each year currently recognise 12 subfamilies: Anomochlooideae, by 1.6 billion people. In wheat, two proteins, gliadin and glutein, along with starch combine to form gluten. When Pharoideae, Puelioideae, Bambusoideae, Ehrhartoideae, these proteins in bread flour are mixed with water and Pooideae, Aristidoideae, Panicoideae, Arundinoideae, kneaded, the resultant product is an elastic dough mixture Micrairoideae, Danthonioideae and Chloridoideae, and in perfectly suited, with the addition of yeast, for baking. The these subfamilies we recognise 50 tribes and 81 subtribes. domestication of modern wheat, a hexaploid (6n=42), is Grasses are well adapted to open, marginal and fre- an interesting story in the coevolution of man and food, quently disturbed habitats, and can be found on every because early domesticates of wheat, the einkorns (Triti- continent, including Antarctica. A grass is characterised cum monococcum L., 2n=14) and emmers (Triticum tur- by having a caryopsis or grain, and the primary inflores- gidum L., 4n=28), were harder to harvest, that is, separate cence is referred to as a spikelet with a lemma and palea. the grains from florets called threshing, and when baked The incorporation of two photosynthetic or carbon produced inferior breads.
    [Show full text]
  • Phenology and Productivity of C3 and C4 Grasslands in Hawaii
    Phenology and Productivity of C3 and C4 Grasslands in Hawaii Stephanie Pau1*, Christopher J. Still2 1 Department of Geography, Florida State University, Tallahassee, Florida, United States of America, 2 Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America Abstract Grasslands account for a large proportion of global terrestrial productivity and play a critical role in carbon and water cycling. Within grasslands, photosynthetic pathway is an important functional trait yielding different rates of productivity along environmental gradients. Recently, C3-C4 sorting along spatial environmental gradients has been reassessed by controlling for confounding traits in phylogenetically structured comparisons. C3 and C4 grasses should sort along temporal environmental gradients as well, resulting in differing phenologies and growing season lengths. Here we use 10 years of satellite data (NDVI) to examine the phenology and greenness (as a proxy for productivity) of C3 and C4 grass habitats, which reflect differences in both environment and plant physiology. We perform phylogenetically structured comparisons based on 3,595 digitized herbarium collections of 152 grass species across the Hawaiian Islands. Our results show that the clade identity of grasses captures differences in their habitats better than photosynthetic pathway. Growing season length (GSL) and associated productivity (GSP) were not significantly different when considering photosynthetic type alone, but were indeed different when considering photosynthetic type nested within clade. The relationship between GSL and GSP differed most strongly between C3 clade habitats, and not between C3-C4 habitats. Our results suggest that accounting for the interaction between phylogeny and photosynthetic pathway can help improve predictions of productivity, as commonly used C3-C4 classifications are very broad and appear to mask important diversity in grassland ecosystem functions.
    [Show full text]