ICES Marine Science Symposia

Total Page:16

File Type:pdf, Size:1020Kb

ICES Marine Science Symposia ICES mar. Sei. Symp., 199: 209-221. 1995 Decapod crustaceans in the diets of demersal fish in the Cantabrian Sea I. Olaso and E. Rodriguez-Marin Olaso, I., and Rodriguez-Marin, E. 1995. Decapod crustaceans in the diets of demer­ sal fish in the Cantabrian Sea. - ICES mar. Sei. Symp., 199: 209-221. The diets of 14 species of demersal fish, representing 81% of the fish biomass of the Cantabrian Sea (ICES Division VIIIc), were determined in the spring and autumn of 1988 from the analysis of 6536 stomachs. Decapod crustaceans represented 54.3% of the diet of these fish in frequency of occurrence and 22.1% in percentage by volume. The main prey taxa were: Solenocera membranacea, Alpeus glaber, the Crangonidae and Processidae families within the Natantia, the Paguridae and Galatheidae families within the Anomura, and Goneplax rhomboides and the Portunidae family within the Brachyura. Predator-prey linkages were described and each predator was assigned to the size group that would best demonstrate any size-related feeding pattern. I. Olaso and E. Rodriguez-Marin: Instituto Espanol de Oceanografia, Laboratorio Oceanogrâfico de Santander. Apdo240, 39080 Santander, Cantabria, Spain [tel: (+34) 42 2740431275033, fax: (+34) 42 275072], Introduction Studies of size, distribution, and abundance of prey and diet selection by predators were conducted because The Bay of Biscay forms a well-defined unit because of these parameters play a fundamental role in the selec­ its geographical location and semi-enclosed nature. The tion of diet and have the advantage of being easily southern part of this gulf, called the Cantabrian Sea, is a quantified (Murdoch and Oaken, 1975; Vince et al., transition zone and its fish and crustacean inhabitants 1976). The large majority of demersal fish are opportun­ are a mixture of tropical, subtropical species and boreal istic feeders and it is also known that prey size in relation species (Garaa-Raso et al., 1987; Olaso, 1990; Sanchez, to the size of the fish is a determining factor in the food 1990). In this area, seasonal reproductive and feeding composition of such feeders (Daan, 1973) and that migrations of commercial species (such as anchovy, differences in diet are influenced by preference for mackerel, red sea bream, hake, and tuna) take place, certain prey. Considering these principles and the ab­ and these migrations support intense fishing activity sence of such studies in this area, we were interested in throughout the year by a large and diversified fleet. determining some of the qualitative aspects of the inter­ In view of the economic importance of these fisheries, action between demersal and benthic fish. Hence, in the a series of research cruises were begun in 1980 to investi­ present article the role of decapod crustaceans as prey, gate the demersal fisheries and to provide information and the trophic linkages and differences in prey size on the distribution and abundance of the megabenthos selection are reported. (Olaso, 1990; Sanchez, 1990). In these cruises the analy­ sis of fish stomach contents was used to determine the alimentary habits of the fish and the relationship be­ tween the invertebrate megabenthos and demersal fish. Materials and methods In previous studies in this area it was determined that crustaceans are the most important prey group in terms The stomach contents of 14 species of demersal fish, of percentage of frequency (Olaso and Pereda, 1986; obtained from stratified random bottom trawl surveys in Sorbe, 1981). These authors noted the importance of the Cantabrian Sea in the spring and autumn of 1988, are crustaceans in the food of small-sized fish, while the rest given in Table 1. These species were selected because of the invertebrate groups were not very significant; they form a significant part (81%) of the fish biomass however, polychaetes and molluscs are important to (Sanchez, 1990) and/or are known predators of decapod specific species of predators (Olaso, 1990). crustaceans. Furthermore, these fish were sufficiently 210 /. Olaso and E. Rodriguez-Marin ices,™ , sd. symp , 199(1995) Table 1. List of predator species whose stomach contents were analysed. N = total number; %E = emptiness percentage. Spring Autumn Total Year Species N % E N % E N %E Aspitrigla cuculus 65 35.4 140 54.3 205 48.3 Aspitrigla obscura 36 16.7 35 54.3 71 35.2 Conger conger 134 41.0 216 39.8 350 40.3 Galeus melastomus 14 35.7 40 10.0 54 16.6 Lepidorhombus boscii 367 32.7 803 45.6 1170 41.5 Lepidorhombus whiffiagonis 484 44.4 696 51.0 1 180 48.5 Lophius piscatorius 89 80.8 141 69.5 230 73.9 Merluccius merluccius 434 57.8 760 53.4 1 194 55.0 Micromesistius poutassou 326 55.8 561 77.0 887 69.2 Mullus surmuletus 215 35.3 55 5.5 270 29.3 Phycis blennoides 121 27.3 121 27.3 Raja clavata 42 9.5 61 14.8 103 12.6 Scyliorhinus canicula 220 25.5 336 23.2 556 24.1 Trisopterus luscus 90 23.3 55 20.0 145 22.1 TOTAL 2516 43.0 4020 49.3 6536 46.9 abundant for analysis; a minimum of 50 stomachs of prey, and Nt is the total number of stomachs contain­ each species were analysed. ing the food analysed. The study area corresponds to ICES Division VIIIc, 2. The volumetric method. The volume of the stomach and is made up of sandy and muddy bottoms. Samples contents was measured applying the ecological feed­ were collected at depths of between 30 and 500 m. Fish­ ing method developed at Woods Hole (Bowman, ing was based on daytime trawling, with trawls of 30 min 1982), in which a “trofometro” is used, a piece of duration, using a trawl gear with a mesh size of 20mm. equipment comprising several different sized half­ Sampling was randomly stratified. The methodology cylinders built into a tray in such a way that they form used to select the stations was described by Sanchez and horizontal half-cylindrical moulds (Olaso, 1990). Olaso (1987). Percentage by volume, V: In each haul a maximum of 10 stomachs per length range of the more abundant fish species were sampled. V = v/V,*100 Fish with regurgitated food in their oral cavity were where v is the volume of a specific prey and V, is the rejected, whereas fish with empty stomachs but without total prey volume. apparent indications of regurgitation were not. The stomach contents were analysed on board ship. Examin­ ation involved separation of food items into taxonomic Each method has both advantages and limitations in categories. Fish, decapod crustaceans, and cephalopod evaluating the importance of a prey group. Frequency of molluscs were identified by species, but other groups occurrence produces a bias, overvaluing small and nu­ were combined into higher order taxa. merous prey. On the other hand, the volumetric method To evaluate the importance of the stomach contents overestimates the importance of large organisms (Hys­ two methods were used: lop, 1980). In this study the decapod crustacean prey are of relatively small size, and so both methods have been taken into account. 1. The frequency o f occurrence method. This was used The following information was collected for each prey to characterize fish feeding, and only stomachs con­ species: percentage in relation to the volume of stomach taining food were used for estimation (Dunn, 1954; contents, number of specimens per stomach, state of Kennedy and Fitzmaurice, 1972). This method does digestion and prey length. The prey which were undi­ not give quantitative information, but is rapid and gested and whose size coincided with those found in the requires a minimum of apparatus, giving a somewhat codend of the net were not considered, since predators qualitative picture of the food spectrum (Hyslop, could have fed while they were concentrated in the net 1980). Frequency of occurrence (percentage), F: during the haul (Brown and Cheng, 1946; Bowman, F = n/Nt*100 1986; Klemetsen, 1982). Measurements were taken from decapod crustaceans where n is the number of stomachs with a specific as follows: for the Natantia, the Macrura Reptantia ICES mar. Sei. Sym p., 199 ( 1995) Decapod crustaceans in the diets of demersal fish in the Cantabrian Sea 211 group and the Galatheidae family, total length was Table 2. List of prey groups found in stomachs of 14 demersal fish species. F = frequency of occurrence percentage; V = measured (distance from the post-orbital edge to the percentage by volume. telson apex, with the abdomen extended); for the Bra- chyura infraorder, carapace length was determined (dis­ Crustacea Decapoda F V tance from the foremost part to the end of the carapace) ; for the Paguridae family, céphalothorax length was Anomura Family Galatheidae measured (distance from the post-orbital edge to the Galalhea spp. 1.18 0.12 post-dorsal edge of the céphalothorax). Munida intermedia 0.26 0.12 If the stomach contents were in an advanced state of Munida perarmata 0.03 0.00 digestion or the prey was incomplete, the length of its Munida sarsi 0.43 0.19 Munida spp. 3.03 2.59 hard structure was measured - carapace or propodus Family Paguridae length in decapod crustaceans. In the laboratory, from Pagurus bernhardus 0.12 0.05 the material collected and preserved in 70% alcohol, Pagurus prideauxi 1.87 2.15 regression functions of size-weight, chela length- Pagurus variabilis 0.06 0.02 0.63 size, céphalothorax length-size, etc., were obtained, Other Paguridae 0.92 Other Anomura 0.17 0.01 from which total length and weight were estimated Total Anomura 7.72 5.88 (Rodriguez-Marin, 1993). Brachyura Atelecyclus rotundatus 0.63 0.78 Corystes cassivelaunus 0.23 0.81 Results Goneplax rhomboides 3.80 1.22 From the demersal fish selected, 6536 stomachs were Inachus leptochirus 0.06 0.01 Family Portunidae analysed (Table 1).
Recommended publications
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • On the Family Stylodactylidae with the Description of a New Genus Neostylodactylus
    on the family Stylodactylidae with the description of a new genus Neostylodactylus Ken-Ichi HAYASHI and Sadayoshi MIYAKE Reprinted from the Journal of the Faculty of Agriculture, Kyushu University, Vol. 14, No.4, November 30, 1968 Journal of Faculty of Agriculture, Kyushu University, Vol. 14, No. 4 November 30, 1968 Notes on the family Stylodactylidae with the description of a new genus Neostylodactylus^ Ken-Ichi HAYASHI and Sadayoshi MIYAKE The superfamily Stylodactyloidea is a very small group containing only one family with one genus Stylodactylus A. Milne Edwards (Holthuis, 1955). The species of this group are distinguishable from the other caridean shrimps by the following characters : the second maxilliped has the last two segments placed side by side at the end of the antepenultimate segment, the first and second pereiopods have the extremely long and slender fingers of the chela, and the third maxilliped and the first two pereiopods bear long setiferous hairs along their lower surface. The genus was established by A. Milne Edwards (1881) on a single species, Stylodactylus serratus, collected from Dominica, West Indies. Two years later A. Milne Edwards (1883) gave figures of another Atlantic species S. rectirostris, in addition to that of the former. Bate (1888) de- scribed three new species based upon the Challenger material, S. bimaxil- laris, S. discissipes and S. orientalis, of which the last is thought to be identical with the second. In 1920 de Man gave a list of all the species of Stylodacty- lus known at that time, including his two species, S. amarynthis and S. sibogae discovered in 1902 and 1918 respectively.
    [Show full text]
  • Crustacea: Decapoda: Caridea) from Korea
    Short communication Korean J. Syst. Zool. Vol. 27, No. 3: 262-267, November 2011 ISSN 2233-7687 http://dx.doi.org/10.5635/KJSZ.2011.27.3.262 Three Species of Processid Shrimps (Crustacea: Decapoda: Caridea) from Korea Jung Nyun Kim*, Jung Hwa Choi, Kangseok Hwang, Taeg Yun Oh, Kwang Ho Choi, Dong Woo Lee Fisheries Resources Management Division, National Fisheries Research and Development Institute, Busan 619-705, Korea ABSTRACT Three species of the family Processidae, Hayashidonus japonicus (De Haan, 1844), Processa sulcata Hayashi, 1975 and Processa zostericola Hayashi, 1975 described with illustrations from Korea. Two of these species, H. japonicus and P. zostericola, represent new records for the Korean carcinological fauna. The genus Haya- shidonus included the single species, H. japonicus is distinguished from other genera of Processidae by the broadly triangular rostrum, the obscure or absent dorsolateral spines of the telson, and the exceptionally long molar process of the mandible. Two species of the genus Processa, P. zostericola and P. sulcata are distin- guishable each other by presence or absence of an obtuse process of the basicerite of antenna on the antero- ventral margin. The basicerite of antenna arms with the obtuse process in P. zostericola, while in P. sulcata the basicerite of antenna lacks the process but is smooth on the ventral margin. A key to these species is pre- sented. Keywords: Hayashidonus japonicus, Processa sulcata, Processa zostericola, Processidae, Decapoda, Korea INTRODUCTION ed and illustrated, and an identification key is provided. The specimens described in this study were deposited in The family Processidae is characterized by a chelate right the National Fisheries Research and Development Institute first pereopod and a simple left pereopod usually terminating (NFRDI).
    [Show full text]
  • First Record of an Invasive Shrimp from the Family Processidae (Crustacea, Decapoda) in the Mediterranean Sea
    Short Communication Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.956 First record of an invasive shrimp from the family Processidae (Crustacea, Decapoda) in the Mediterranean Sea Y. LEVITT1, S. DE GRAVE2 and N. SHENKAR1 1 Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel 2 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, U.K. Corresponding author: [email protected] Handling Editor: Argyro Zenetos Received: 17 July 2014; Accepted: 19 August 2014; Published on line: 2 October 2014. Abstract This is the first recording on the genusNikoides Paulson, 1875 in the Mediterranean Sea, with remarks on taxonomy and ecology. Keywords: Decapoda; Processidae, Nikoides sibogae, alien species, Mediterranean Sea, Levantine Basin, Suez Canal. Introduction Materials and Methods The introduction of tropical species into the Mediter- During 2012 a scientific survey was conducted along ranean Sea has been ongoing since the opening of the Suez the Mediterranean coast of Israel (Fig. 1), by four nocturnal Canal in 1869. This Lessepsian migration, a term coined in trawling cruises: Nizzanim, coast of Israel: (31ο44.270N memory of the French engineer Ferdinand De-Lesseps (Por, 34ο32.630E-31ο47.573N 34ο34.768E), depth 32 m, sand- 1971), does not show any sign of abating. More than 430 mud bottom, 24 June 2012, 1 ovigerous female (ovf), marine alien species have been recorded along the coasts of pocl 12.0 mm (TAU AR 29080); Nizzanim, coast of Is- Israel (Katsanevakis et al., 2013).
    [Show full text]
  • Geology of Saipan Mariana Islands Part 4
    Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Geology of Saipan Mariana Islands Part 4. Submarine Topography and Shoal- Water Ecology By PRESTON E. CLOUD, Jr. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280-K Description and interpretation of the submarine topography and of the sediments^ biotas^ and morphology of the reef complex adjacent to a geologically diverse tropical island UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. S EATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. GEOLOGICAL SURVEY PROFESSIONAL PAPER 280 Geology of Saipan, Mariana Islands Part 1. General Geology A. General Geology By PRESTON E. CLOUD, Jr., ROBERT GEORGE SCHMIDT, and HAROLD W. BURKE Part 2. Petrology and Soils B. Petrology of the Volcanic Rocks By ROBERT GEORGE SCHMIDT C. Petrography of the Limestones By J. HARLAN JOHNSON D. Soils By RALPH J. McCRACKEN Part 3. Paleontology E. Calcareous Algae By J. HARLAN JOHNSON F. Difcoaster and Some Related Microfossils By M. N. BRAMLETTE G. Eocene Radiolaria By WILLIAM RIEDEL H. Smaller Foraminifera By RUTH TODD I. Larger Foraminifera By W. STORRS COLE J. Echinoids By C. WYTHE COOKE Part 4. Submarine Topography and Shoal-Water Ecology K. Submarine Topography and Shoal-Water Ecology By PRESTON E. CLOUD, Jr. CONTENTS Page Page Abstract_________________________________________ 361 Shoal-water and shoreline ecology and sediments—Con. Introduction. ______________________________________ 362 Habitat descriptions—Con. Purpose and scope of the work_____________________ 362 Organic reefs and reef benches______________ 383 Field methods and acknowledgments-_______________ 362 Minor reef structures______________________ 384 Systematic identifications and other research aid____ 363 Biotope X.
    [Show full text]
  • Some European Processidae (Crustacea, Decapoda, Caridea) I > A
    J. nat. Hist., 1975, 9 ; 693-703 ' ^ . ^ctUxUAAj^- Some European Processidae (Crustacea, Decapoda, Caridea) i > A. H. Y. AL-ADHUB* and D. I WILLIAMSON University of Liverpool Department of Marine Biology, Port Erin, Isle of Man library D1VlSlon of T , , Crustww Introduction The European Processidae all belong to the genus Processa Leach, 1815 (= Nika Risso, 1816). Prior to 1936, only one species was generally recognized in this region, although some authors, notably Kemp (1910), had commented on the great differences between forms which they regarded as representing the extremes of specific variation. The first clear demonstration that more than one species was involved was provided by Lebour (1936) who showed that two species were present near Plymouth; she described these under the names P. canaliculata Leach and P. edulis (Risso). Later, after a thorough study of specimens from many localities, Nouvel & Holthuis (1957) recognized eight European species, one of these being further divisible into three subspecies. These authors considered that Lebour had misapplied the name P. canaliculata, and they attached it to a species which they regarded as being in better agree- ment with the illustration by Leach (1815). They redescribed the species which Lebour had called P. canaliculata under the name P. mediterranea (Parisi). Allen (1961) questioned the status of the nominal species which Nouvel & Holthuis (1957) had called P. canaliculata and P. mediterranea, claiming that specimens captured off north-east England could not be satisfactorily identified using the key given by these authors. He regarded most of the points of distinction between the two forms as representing " extremes of a variation that is related to the growth of the shrimp '' and came to the conclusion that P.
    [Show full text]
  • Decapoda: Caridea) from the Southern Region of Laguna Madre, Tamaulipas, Mexico, with New Records and a Key for Taxonomic Identification
    14 2 ANNOTATED LIST OF SPECIES Check List 14 (2): 479–494 https://doi.org/10.15560/14.2.479 Updated checklist of estuarine caridean shrimps (Decapoda: Caridea) from the southern region of Laguna Madre, Tamaulipas, Mexico, with new records and a key for taxonomic identification Hiram Herrera-Barquín,1 Antonio Leija-Tristán,1 Susana Favela-Lara2 1 Laboratorio de Ecología Pesquera, Laboratorio de Ecología Molecular, Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n cruz con Av. Manuel L. Barragán, 66451, San Nicolás de los Garza, Nuevo León, Mexico. 2 Laboratorio de Ecología Molecular, Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n cruz con Av. Manuel L. Barragán, 66451, San Nicolás de los Garza, Nuevo León, Mexico. Corresponding author: Hiram Herrera-Barquín, [email protected] Abstract We provide an updated list of the caridean shrimp species from the southern region of the Laguna Madre, Tamauli- pas, Mexico, along with a key for taxonomic identification. The survey was conducted in 3 sites during 3 temporal seasons. A total of 2,989 specimens were collected belonging to 12 species, 6 genera, and to the following 4 families: Alpheidae, Hippolytidae, Palaemonidae, and Processidae. Hippolytidae was the most abundant family, followed by Palaemonidae, Alpheidae, and Processidae. The hippolytid Hippolyte obliquimanus Dana, 1852, the palaemonids Palaemon floridanus Chace, 1942, and P. northropi (Rankin, 1898), and the alpheid Alpheus cf. packardii Kingsley, 1880 represent new records for the Laguna Madre and selected areas of the Gulf of Mexico.
    [Show full text]
  • Temporal and Age-Related Dietary Variations in a Large Population of Yellow-Legged Gulls Larus Michahellis: Implications for Management and Conservation
    Eur J Wildl Res DOI 10.1007/s10344-015-0958-9 ORIGINAL ARTICLE Temporal and age-related dietary variations in a large population of yellow-legged gulls Larus michahellis: implications for management and conservation Hany Alonso1,2 & Ana Almeida 3 & José Pedro Granadeiro4 & Paulo Catry1 Received: 27 March 2015 /Revised: 13 August 2015 /Accepted: 23 August 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract There was an extraordinary increase in the numbers Nevertheless, large amounts of refuse and fish were consumed of European gulls during the twentieth century which has been in periods of apparent lower availability of swimming crabs. linked to higher availability of food derived from human ac- Despite the large temporal shifts in diet and feeding areas tivities. At Berlenga island (Portugal), the population of (change from marine to terrestrial prey), adult gulls consistent- yellow-legged gulls Larus michahellis increased from 2600 ly provisioned their chicks with a fish-based diet and chick individuals to a peak of 44,698 gulls (1974–1994), after which condition remained constant. These results not only highlight control measures have been put in place. Despite the manage- the great resilience of this population to changes in food avail- ment effort, little is known about the feeding ecology of this ability but also indicate that food from different human activ- population. To investigate temporal and age-related variations ities remain highly accessible. With the implementation of in the diet of yellow-legged gulls at Berlenga, 1668 adult recent EU legislation regarding the reduction of fishery dis- pellets and 145 chick regurgitates were collected and analysed cards, and the increase of urban populations in the mainland, between 2009 and 2012.
    [Show full text]
  • Das System Der Decapoden-Krebse. Arnold Eduard Ortmann
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Nachdruck verboten liebersttzungsrecht vorbehalten. Das System der Decapoden-Krebse. Von Dr. Arnold E. Ortmann, in Princeton, N. J., — U. S. A. In einer Reihe von acht Abhandlungen, die ich in den Jahren 1890-1894 veröffentlicht habe ^), richtete ich besondere Aufmerksam- keit darauf, ein den Verwandtschaftsverhältnissen entsprechendes System der Decapoden-Krebse aufzustellen. Diese Untersuchungen, die sich auf den grundlegenden Arbeiten von Boas aufbauen, haben i) Oktmann, Die Decapoden-Krebse des Strassburger Museums. 1890. 1. Theil, Die Unterordnung Natantia Boas, in: Zool. Jahrb., V. 5, Syst., 1890. 1891a. 2. Theil, Versuch einer Revision der Gattungen Palaemon und Bithynis, ibid. V. 5, 1891. 1891b. 3. Theil, Die Abtheilungen der Reptantia Boas: Homaridea, Loricata und Thalassinidea, ibid. V. 6, 1891. 1892a. 4. Theil, Die Abtheilungen Galatheidea und Paguridea, ibid. V. 6, 1892. 1892b. 5. Theil, Die Abtheilungen Hippidea, Dromiidea und Oxystomata, ibid. V. 6, 1892. 1893a. 6. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) I. Unterabtheilung: Majoidea und Cancroidea, 1. Section : Portuninea, ibid. V. 7, 1893. 1893b. 7. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) II. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 1. Gruppe: Cyclometopa, ibid. V. 7, 1893. 1894. 8. Theil, Abtheilung: Brachyura (Brachyura genuina Boas) III. Unterabtheilung : Cancroidea, 2. Section : Cancrinea, 2. Gruppe: Catametopa, ibid. V. 7, 1894. ZooI. Jahrb. IX. Abth. f. Syst. 27 - © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 4l0 A. ORTMANN, dazu geführt, dass ich die alte Eiiitheiluiig der Decapoden in Macrureil, Anomuren und Brachyuren gänzlich verliess und dafür eine Keihe von grossen ,, Abtheilungen" aufstellte, deren jede einen besondern, eigenthümlich entwickelten Hauptzweig des Decapoden-Stammes dar- stellt.
    [Show full text]
  • The Crustacean Society Mid-Year Meeting 2019
    THE CRUSTACEAN SOCIETY MID-YEAR MEETING 2019 ABSTRACT BOOKLET Table of Contents PLENARY LECTURES ........................................................................................................... 1 ORAL PRESENTATIONS ...................................................................................................... 7 SYMPOSIUM 1: Frontiers in Crustacean Biology: Asian Perspectives ................................ 43 SYMPOSIUM 2: Recent Advances in Caridean Systematics ............................................... 53 SYMPOSIUM 3: Evolution and Ecology of Parasitic and Symbiotic Crustaceans ................ 59 SYMPOSIUM 4: Biology of Freshwater Crayfish ................................................................ 69 SYMPOSIUM 5: Deep-sea Biodiversity: A Crustacean Perspective .................................... 77 SYMPOSIUM 6: Comparative Endocrinology and Genomics in Arthropods ....................... 87 SYMPOSIUM 7: Fossil and Modern Clam Shrimp .............................................................. 97 SYMPOSIUM 8: Aquaculture Biotechnology of Crabs ..................................................... 108 POSTER PRESENTATIONS ............................................................................................... 114 PLENARY LECTURES PL1 Effects of temperature variations on reproduction: Transduction of physiological stress through species interactions between two porcelain crabs B. TSUKIMURA1, ALEX GUNDERSON2, JONATHON STILLMAN3 1. California State University, Fresno, USA 2. Tulane University, USA 3.
    [Show full text]
  • Vinagre Supplement
    The following supplement accompanies the article Estuarine-coastal gradient in food web network structure and properties C. Vinagre*, M. J. Costa Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal *Corresponding author: [email protected] Marine Ecology Progress Series 503: 11–21 (2014) Supplement. Additional data Table S1. List of the trophic species (groups of taxa whose members share the same set of predators and prey) used to assemble the food web networks. Mean trophic level, generality, vulnerability and connectivity for each trophic species in a food web containing all trophic species Taxa Group TL Generality Vulnerability Connectivity Chlorophyta Algae 1.0 0.0 3.2 1.6 Cyanophycota Algae 1.0 0.0 0.5 0.2 Rhodophyta Algae 1.0 0.0 1.7 0.8 Cryptophycophyta + Prasinophyceae Algae 1.0 0.0 0.9 0.5 Phytoplankton Algae 1.0 0.0 3.1 1.5 Detritus Detritus 1.0 0.0 3.5 1.8 Echinodermata Echinodermata 2.0 0.3 4.3 2.3 Oikopleura sp. Tunicata 2.0 0.2 0.2 0.2 Amphipoda Amphipoda 2.0 0.6 9.5 5.0 Oligochaeta Oligochaeta 2.0 0.2 1.1 0.6 Gastropoda Gastropoda 2.0 0.3 6.0 3.1 Ostracoda Ostracoda 2.0 0.2 2.9 1.5 Cirripedia Cirripedia 2.0 0.2 0.9 0.5 Lophogastrida Lophogastrida 2.0 0.2 5.5 2.8 Cumacea Cumacea 2.0 0.3 1.8 1.1 Barbus bocagei Fish 2.0 0.2 0.9 0.5 Ebalia sp.
    [Show full text]
  • Molecular Phylogeny of the Western Atlantic Species of the Genus Portunus (Crustacea, Brachyura, Portunidae)
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2007? 2007 1501 211220 Original Article PHYLOGENY OF PORTUNUS FROM ATLANTICF. L. MANTELATTO ET AL. Zoological Journal of the Linnean Society, 2007, 150, 211–220. With 3 figures Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae) FERNANDO L. MANTELATTO1*, RAFAEL ROBLES2 and DARRYL L. FELDER2 1Laboratory of Bioecology and Crustacean Systematics, Department of Biology, FFCLRP, University of São Paulo (USP), Ave. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP (Brazil) 2Department of Biology, Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, USA Received March 2004; accepted for publication November 2006 The genus Portunus encompasses a comparatively large number of species distributed worldwide in temperate to tropical waters. Although much has been reported about the biology of selected species, taxonomic identification of several species is problematic on the basis of strictly adult morphology. Relationships among species of the genus are also poorly understood, and systematic review of the group is long overdue. Prior to the present study, there had been no comprehensive attempt to resolve taxonomic questions or determine evolutionary relationships within this genus on the basis of molecular genetics. Phylogenetic relationships among 14 putative species of Portunus from the Gulf of Mexico and other waters of the western Atlantic were examined using 16S sequences of the rRNA gene. The result- ant molecularly based phylogeny disagrees in several respects with current morphologically based classification of Portunus from this geographical region. Of the 14 species generally recognized, only 12 appear to be valid.
    [Show full text]