Spätial Distribütion of Decapod Crustaceans in the Galician Continental Shelf (NW Spain) Using Geostatistical Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Spätial Distribütion of Decapod Crustaceans in the Galician Continental Shelf (NW Spain) Using Geostatistical Analysis ., International Council for Shellfish Committee the Exploration of the Sea ICES C.M.: 1991/K:4 Spätial distribütion of decapod crustaceans in the Galician continental shelf (NW Spain) using geostatistical analysis Juan Freire, Luis Fernandez & Eduardo Gonzalez-Gurdaran Departamento de Bioloxia Animal, Faeultade de Ciencias, Universidade da Coruna. E-15071 fA.,Coruna, Spain ABSTRACT " Geostatistieal methodology was applied to analyze spatial strueture and distribution of the epibenthic erustaeeans Liocarcinus depurator, Macropipus tubercu/atus, Po/ybius hens/owii, Munida intermedia, Munida sarsi, P/esionika heterocarpus and So/enocera • membranacea in the Galician eoniiriental shetf during three survey eruises earried out in 1983 and 1984. The experimental vadograms were ealeulated and fitted to spherieal models. The spatial strueture model was used to estimate abundanee and map the populations using kriging. The variograms have a variable strueture depending on speeies, population density and/or geographieal area. Spatial strueture beeomes well-defined as density inereases for L. depurator, M. tubercu/atus, M. illtermedia and M.sarsi, whereas P. hens/owii, P. heterocarpus and S. membranacea do not present a simple relationship. Range of spherieal models, pateh size, fluetuates between 7 arid 32 Km, and is Iinked both'to interspecifie differenees in spatial pattern, and, in some eases, to density. L. (Jepurator and M. tubereulatus are distributed over wide areas of relatively low average density, and witti variable loeation of the groupings. Patehes of P. hens/owii stay in a fairly eonstant loeation from one eruise to another, in spite of the graat fluetuations in density. Anomuran (M. intermedia and M. sars/) arid shrimp (P. heterocarpus and S. membranacea) species present relatively stable high density areas during the different eruises on EI medium seale, although the loeation of the patehes ehanges on a small seale. This suggests that there are stable physieal faetors that eontribute to determine how the speeies are distributed. Deptti is a Iimiting faetor on a large seale, whereas oceanographic coriditions, in particular upwelling processes and riutdent-rich water from the rias, make up the spatial strueture on a smaller seale in some species. " INTRODUCTION The use of geosÜltisties (CLARK, 1979; MATHERON, 1971) in marine biology was introduced during the second half of ttie 1980's (CoNAN, 1985). It is currently used in the assessment of harvested populations, mainly invertebrates (CONAN & WADE, 1989; CONAN ET AL., 1988; NICOLAJSEN & CONAN, 1987; PETITGAS & POULARD, 1989). The introduetion of this type ofanalysis to fisheries was motivated by ttie crltieism of the traditional methods of stock assessment (arithmetic mean or swept-area based in randorn or stratified random sampling), and in particular their application tO invertebrates (CONAN, 1984). These assessments are sUbjeet to estimalion errors, as the spatial distribution of the organisms is riot taken into aecount, nor, in the ca se cif many invertebrate speeies, is their limited or , , 1 .. ,i I ,I, .' non-existent mobility. Also, regionalized estimates are obtained with geostatistical methodology, and they are important for the analysis öf spatial fishery dynamics (CONAN, 1985). .,I . However, spatial analysis in ecology has ev~lved from the study of probability distributions of sampies considered to be independent (see HURlBERT, 1990 for a i'ecent critique), to autocorrelation and spatial structure analysis (ClIFF &ORD, 1981; JUMARS ET AL.~ 1977). In this sense geostatistical analysis allows us to analyze and model spatial variability which has traditionally becn avoided, an'd uses the spatial structure öf the population to enhance both mean and variance estimates (MATHERON, 1971). :, , Geostatistical analysis does not require a special sampling design albeit best rssults of vai'iograms, mapping and assessments are obtained for sampies taken along a regular grid (BURROUGHS, 1987). The present study analyzes data from three survey cruises carried out in the Galician continental shelf (NW Spain) using geostatistical techniques to describe and map the ablJndance and spatial structure of seven species of epibenthic decapod crustaceans (Liocarcinus depurator, Macropipus tube'rculatus, Polybius henslowii, Munida inteiinedia, Munida 5arsi, Plesionika heterocarpus a'nd Solenocerci membranacea). The ".,. results will aHow lJS to analyze 1) the feasibility of using geostatistics for existing data collected according to traditional methods, and 2) the feasibility of enhancing such methodology. ! • I . I MATERIAL ANO METHOOS. I Sampling The sampling is described in detail by GONzAi...EZ-GuRRIARAN & OLASO, 1987. We anaiyze data of three cruises that took place in tha Galician continental shert: CARIOCA 83 (C83, September 1983), ICTIO-NW 84 (184, May 1984) and CARIOCA 84 (C84, August-September 1984). During each cruise a randomly stratified sampling was carried out (up tö 500 m deep), in which the shelf was divided into ihres geographical areas (Miiio-Fisterra, Fisterra-Estaca de Bares and Estaca 'de Bares-Ortega!), considering two strata to be divided bythe isobath öf 200 m(Fig. 1). Baka type trawl was lJsed, with each tow lasting between 30 and 60 minutes. For data an'alysis, the densities of ihe. different speciss were standardized to 60 minute trawls. : ' j Oata analysis I • f\.. , ,.. '.'! \ ,.' <".' •. " i ; • In geostatistical methodology (CLARK, 1979; CONAN, 1985; MATHERON, 1971), the covariance of the parameter studied is analyzed and modelIed in terms of the distance between sampling units (variogram), and the optimumweights are calculated for aach sampie in order to estimate the population density as weil as the variance of tha estimate~ whether at a point (point kriging) or a block (block kriging). I I , The variogram represents the semivariance T(h) (variance between independent s8mples minus the ciovariance between sBmples sep~raied by adistance h): I t • .' . N.... .. r(h) = 1/2n I [Z(xj )- Z(xj +h)]2 1-' I, wllere' Z(x.) and Z(x.+ h) are ttie density 8t point "J arid 'in the sampies located at a distance h (lag) from X;, ri is the number of pairs of stations sampled, ärid N the number of sampling p~n~. I , 2 ! I A theoretical modei is fitted to the experimental variogram. We used t~e sphericai model (the most common in the analysis of marine populations arid in geostatisties in general): vithere Co is the nugget effect, due to the variability between replicates, the microstructure whieh remains undetected because of the sampie size, or errors in measurement or loeation; C represerits the sill minus the nugget effect, where the sill is the asymptotie "alue of semivarianee, reaehed with a "alue of h = a,ealled range, whieh represents the . maximum distanee at whieh spatial effeets are deteeted. Variograms were calculated for the overall sampling area and for two geographieal zones of the shelf (Fig. 1): North, from Fisterra to Ribadeo, with a SW-NE shoreline orientation; and South, from Mino to FistEma, with N-S orieritation and a great influence from the Rias (in the C84 eruise experimental variograms for the southern area were not ealeulated beeause tt1e number of sampling points was too smalI). Results presented " correspond to isotropie variograms; anisotropy was not. studied in detail, although anisotropie variograms ealeulated in the direetion of the shoreline (riot shown) have a similar strueture to isotropic variograms for each area. Point kriging was used for • estimating values at the nades of a 5 x 5 Km grid eovering a survey area extending from the coast to the 500 rri isobath. Variogram models fitted for the overall samplirig area were used for kriging. The data analysis was earried out using GEOMIN software modified by G. Conan and E. Wade (Marine Biology Research Centra, Universite de Moneton, Canada) and GEO­ EAS software (ENGLUND & SPARKS, 1988). , .., RESULTS Table 1 shows data on eatehes for eaeh speeies and eruise as weil as parameters of variogram models. Figs. 2-7 present experimental and model variograms and point kriging based isocontour density maps. Liocarcinus depurator. In C83 in the southern area a-spatial covariance with a range of 14­ Km is deteeted; and in C84, when this speeies reaehes greater densities, the variogram points to a spatial strueture having a praetieally non-existent nugget effeet aild a range of around 20 Km. In this cruise, L. depurator oeeupies an extensive area of relatively high density to the north of Fisterra, and maximum values found in shallow waters (approximately 100 m). Macropipus tubereulatus. A spatial eovariance in· the distribution of this species is detected in all three data sets analyzed. The range of the variograms fluctuates between 10 and 28 Km. The nugget. effeet is importäni only iri C84, suggesting the existerice cf groupings with less than 28 Km in size. M. itiberculatus appears mainly in tha northern area, although the centres of greatest density are relativelyvariable in the different eruises, and very widespread, generally loeated at depths of over 200 m. PolYbius henslowii. Variograms show ranges betwaen 12-20 Km in eruise C83 and 28 Km in C84. C83 variograms have an important nugget effeet, suggesting undeteeted mierostruetures. Incruise 184~ withverylow densities, spatial eovarianee is present oniV in a short range (7.5 Km) and no pattern is apparent analyzing riort.hern arid sOlJtherri areas sepäratelY. In the three eruises, maximum densities are loeated in zones opposite1:he Rfas Baixas and in the Fisterra-Estaca zone, with maximum density values (> 2000·t1our-') .. 3 j found in coastal areas. The patch structure in C84 is less complex than in othe'r crujses. I I Munida intermedia. In C83 spatial covariance is undetected. In 184 the variograms are noisy although they show two maximums of semivariance ai 13 and 22 Km. In cruise C84, which the highest densities, spatial cevariances'range up to 25 Km (20 Km in the North). Variograms showing spätial covariance do not'preseni nugget effects. Maximum catches of M. intermedia are loeated in the deepesi zone of the Fisterra-Estaea area and out of the Rras Baixas, riear the eoäst.
Recommended publications
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • ICES Marine Science Symposia
    ICES mar. Sei. Symp., 199: 209-221. 1995 Decapod crustaceans in the diets of demersal fish in the Cantabrian Sea I. Olaso and E. Rodriguez-Marin Olaso, I., and Rodriguez-Marin, E. 1995. Decapod crustaceans in the diets of demer­ sal fish in the Cantabrian Sea. - ICES mar. Sei. Symp., 199: 209-221. The diets of 14 species of demersal fish, representing 81% of the fish biomass of the Cantabrian Sea (ICES Division VIIIc), were determined in the spring and autumn of 1988 from the analysis of 6536 stomachs. Decapod crustaceans represented 54.3% of the diet of these fish in frequency of occurrence and 22.1% in percentage by volume. The main prey taxa were: Solenocera membranacea, Alpeus glaber, the Crangonidae and Processidae families within the Natantia, the Paguridae and Galatheidae families within the Anomura, and Goneplax rhomboides and the Portunidae family within the Brachyura. Predator-prey linkages were described and each predator was assigned to the size group that would best demonstrate any size-related feeding pattern. I. Olaso and E. Rodriguez-Marin: Instituto Espanol de Oceanografia, Laboratorio Oceanogrâfico de Santander. Apdo240, 39080 Santander, Cantabria, Spain [tel: (+34) 42 2740431275033, fax: (+34) 42 275072], Introduction Studies of size, distribution, and abundance of prey and diet selection by predators were conducted because The Bay of Biscay forms a well-defined unit because of these parameters play a fundamental role in the selec­ its geographical location and semi-enclosed nature. The tion of diet and have the advantage of being easily southern part of this gulf, called the Cantabrian Sea, is a quantified (Murdoch and Oaken, 1975; Vince et al., transition zone and its fish and crustacean inhabitants 1976).
    [Show full text]
  • Temporal and Age-Related Dietary Variations in a Large Population of Yellow-Legged Gulls Larus Michahellis: Implications for Management and Conservation
    Eur J Wildl Res DOI 10.1007/s10344-015-0958-9 ORIGINAL ARTICLE Temporal and age-related dietary variations in a large population of yellow-legged gulls Larus michahellis: implications for management and conservation Hany Alonso1,2 & Ana Almeida 3 & José Pedro Granadeiro4 & Paulo Catry1 Received: 27 March 2015 /Revised: 13 August 2015 /Accepted: 23 August 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract There was an extraordinary increase in the numbers Nevertheless, large amounts of refuse and fish were consumed of European gulls during the twentieth century which has been in periods of apparent lower availability of swimming crabs. linked to higher availability of food derived from human ac- Despite the large temporal shifts in diet and feeding areas tivities. At Berlenga island (Portugal), the population of (change from marine to terrestrial prey), adult gulls consistent- yellow-legged gulls Larus michahellis increased from 2600 ly provisioned their chicks with a fish-based diet and chick individuals to a peak of 44,698 gulls (1974–1994), after which condition remained constant. These results not only highlight control measures have been put in place. Despite the manage- the great resilience of this population to changes in food avail- ment effort, little is known about the feeding ecology of this ability but also indicate that food from different human activ- population. To investigate temporal and age-related variations ities remain highly accessible. With the implementation of in the diet of yellow-legged gulls at Berlenga, 1668 adult recent EU legislation regarding the reduction of fishery dis- pellets and 145 chick regurgitates were collected and analysed cards, and the increase of urban populations in the mainland, between 2009 and 2012.
    [Show full text]
  • The Crustacean Society Mid-Year Meeting 2019
    THE CRUSTACEAN SOCIETY MID-YEAR MEETING 2019 ABSTRACT BOOKLET Table of Contents PLENARY LECTURES ........................................................................................................... 1 ORAL PRESENTATIONS ...................................................................................................... 7 SYMPOSIUM 1: Frontiers in Crustacean Biology: Asian Perspectives ................................ 43 SYMPOSIUM 2: Recent Advances in Caridean Systematics ............................................... 53 SYMPOSIUM 3: Evolution and Ecology of Parasitic and Symbiotic Crustaceans ................ 59 SYMPOSIUM 4: Biology of Freshwater Crayfish ................................................................ 69 SYMPOSIUM 5: Deep-sea Biodiversity: A Crustacean Perspective .................................... 77 SYMPOSIUM 6: Comparative Endocrinology and Genomics in Arthropods ....................... 87 SYMPOSIUM 7: Fossil and Modern Clam Shrimp .............................................................. 97 SYMPOSIUM 8: Aquaculture Biotechnology of Crabs ..................................................... 108 POSTER PRESENTATIONS ............................................................................................... 114 PLENARY LECTURES PL1 Effects of temperature variations on reproduction: Transduction of physiological stress through species interactions between two porcelain crabs B. TSUKIMURA1, ALEX GUNDERSON2, JONATHON STILLMAN3 1. California State University, Fresno, USA 2. Tulane University, USA 3.
    [Show full text]
  • Vinagre Supplement
    The following supplement accompanies the article Estuarine-coastal gradient in food web network structure and properties C. Vinagre*, M. J. Costa Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal *Corresponding author: [email protected] Marine Ecology Progress Series 503: 11–21 (2014) Supplement. Additional data Table S1. List of the trophic species (groups of taxa whose members share the same set of predators and prey) used to assemble the food web networks. Mean trophic level, generality, vulnerability and connectivity for each trophic species in a food web containing all trophic species Taxa Group TL Generality Vulnerability Connectivity Chlorophyta Algae 1.0 0.0 3.2 1.6 Cyanophycota Algae 1.0 0.0 0.5 0.2 Rhodophyta Algae 1.0 0.0 1.7 0.8 Cryptophycophyta + Prasinophyceae Algae 1.0 0.0 0.9 0.5 Phytoplankton Algae 1.0 0.0 3.1 1.5 Detritus Detritus 1.0 0.0 3.5 1.8 Echinodermata Echinodermata 2.0 0.3 4.3 2.3 Oikopleura sp. Tunicata 2.0 0.2 0.2 0.2 Amphipoda Amphipoda 2.0 0.6 9.5 5.0 Oligochaeta Oligochaeta 2.0 0.2 1.1 0.6 Gastropoda Gastropoda 2.0 0.3 6.0 3.1 Ostracoda Ostracoda 2.0 0.2 2.9 1.5 Cirripedia Cirripedia 2.0 0.2 0.9 0.5 Lophogastrida Lophogastrida 2.0 0.2 5.5 2.8 Cumacea Cumacea 2.0 0.3 1.8 1.1 Barbus bocagei Fish 2.0 0.2 0.9 0.5 Ebalia sp.
    [Show full text]
  • Molecular Phylogeny of the Western Atlantic Species of the Genus Portunus (Crustacea, Brachyura, Portunidae)
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2007? 2007 1501 211220 Original Article PHYLOGENY OF PORTUNUS FROM ATLANTICF. L. MANTELATTO ET AL. Zoological Journal of the Linnean Society, 2007, 150, 211–220. With 3 figures Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae) FERNANDO L. MANTELATTO1*, RAFAEL ROBLES2 and DARRYL L. FELDER2 1Laboratory of Bioecology and Crustacean Systematics, Department of Biology, FFCLRP, University of São Paulo (USP), Ave. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto, SP (Brazil) 2Department of Biology, Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, USA Received March 2004; accepted for publication November 2006 The genus Portunus encompasses a comparatively large number of species distributed worldwide in temperate to tropical waters. Although much has been reported about the biology of selected species, taxonomic identification of several species is problematic on the basis of strictly adult morphology. Relationships among species of the genus are also poorly understood, and systematic review of the group is long overdue. Prior to the present study, there had been no comprehensive attempt to resolve taxonomic questions or determine evolutionary relationships within this genus on the basis of molecular genetics. Phylogenetic relationships among 14 putative species of Portunus from the Gulf of Mexico and other waters of the western Atlantic were examined using 16S sequences of the rRNA gene. The result- ant molecularly based phylogeny disagrees in several respects with current morphologically based classification of Portunus from this geographical region. Of the 14 species generally recognized, only 12 appear to be valid.
    [Show full text]
  • A History of the British Stalk-Eyed Crustacea
    Go ygle Acerca de este libro Esta es una copia digital de un libro que, durante generaciones, se ha conservado en las estanterias de una biblioteca, hasta que Google ha decidido escanearlo como parte de un proyecto que pretende que sea posible descubrir en linea libros de todo el mundo. Ha sobrevivido tantos anos como para que los derechos de autor hayan expirado y el libro pase a ser de dominio publico. El que un libro sea de dominio publico significa que nunca ha estado protegido por derechos de autor, o bien que el periodo legal de estos derechos ya ha expirado. Es posible que una misma obra sea de dominio publico en unos paises y, sin embargo, no lo sea en otros. Los libros de dominio publico son nuestras puertas hacia el pasado, suponen un patrimonio historico, cultural y de conocimientos que, a menudo, resulta dificil de descubrir. Todas las anotaciones, marcas y otras senales en los margenes que esten presentes en el volumen original apareceran tambien en este archivo como testimonio del largo viaje que el libro ha recorrido desde el editor hasta la biblioteca y, finalmente, hasta usted. Normas de uso Google se enorgullece de poder colaborar con distintas bibliotecas para digitalizar los materiales de dominio publico a fin de hacerlos accesibles a todo el mundo. Los libros de dominio publico son patrimonio de todos, nosotros somos sus humildes guardianes. No obstante, se trata de un trabajo caro. Por este motivo, y para poder ofrecer este recurso, hemos tornado medidas para evitar que se produzca un abuso por parte de terceros con fines comerciales, y hemos incluido restricciones tecnicas sobre las solicitudes automatizadas.
    [Show full text]
  • Mediterranean Sea Turtles: Current Knowledge and Priorities for Conservation and Research Paolo Casale1,*, Annette C
    The following supplement accompanies the article Mediterranean sea turtles: current knowledge and priorities for conservation and research Paolo Casale1,*, Annette C. Broderick2, Juan Antonio Camiñas3,4, Luis Cardona5, Carlos Carreras6, Andreas Demetropoulos7, Wayne J. Fuller8, Brendan J. Godley2, Sandra Hochscheid9, Yakup Kaska10, Bojan Lazar11,12, Dimitris Margaritoulis13, Aliki Panagopoulou13,14, ALan F. Rees2,13, Jesús Tomás15, Oguz Türkozan16 *Corresponding author: [email protected] Endangered Species Research 36: 229–267 (2018) Full list of authors’ affiliations 1Department of Biology, University of Pisa, Via A. Volta 6, I-56126, Pisa, Italy 2Marine Turtle Research Group, Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK 3Málaga Oceanographic Centre, Instituto Español de Oceanografía (IEO) Puerto Pesquero, 29640 Fuengirola (Spain) 4Spanish Herpetological Association (AHE), Museo Nacional de Ciencias Naturales, CSIC. c/ José Gutierrez Abascal 2, 28006 Madrid 5IRBio and Department of Evolutionary Biology, Ecology and Environmental Science, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain 6IRBio and Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av.Diagonal 643,08028 Barcelona, Spain 7Cyprus Wildlife Society.P.O. Box 24281, Nicosia 1703, Cyprus 8Faculty of Veterinary Medicine, Near East University, Nicosia, North Cyprus, Mersin 10, Turkey 9Marine Turtle
    [Show full text]
  • 2.3. the Economic Activity of Recreational Fishing Charters in the North Atlantic
    Escola Internacional de Doutoramento Pablo Pita Orduna TESE DE DOUTORAMENTO Analyzing key economic, social and governance patterns for the management of complex socioecological systems in data-poor situations Dirixida polos doutores: Sebastián Villasante Larramendi e Manel Antelo Suárez Ano: 2020 1 | Page Analyzing key economic, social and governance patterns for the management of complex socio- ecological systems in data-poor situations Acknowledgments Thanks to all those who, in so different ways, have forced me to move forward. To Diana, Ada, and Elba 3 | Page PhD in Marine Science, Technology and Management. Research area in Economics, Legislation and Management of marine resources Analyzing key economic, social and governance patterns for the management of complex socio- ecological systems in data-poor situations Index of contents Acknowledgments ......................................................................................................................... 3 Abstract ......................................................................................................................................... 5 Resumen ...................................................................................................................................... 12 1. Introduction............................................................................................................................. 20 2. Objectives ...............................................................................................................................
    [Show full text]
  • Annual and Seasonal Consistency in the Feeding Ecology of an Opportunistic Species, the Yellow-Legged Gull Larus Michahellis
    Vol. 497: 273–284, 2014 MARINE ECOLOGY PROGRESS SERIES Published February 5 doi: 10.3354/meps10586 Mar Ecol Prog Ser Annual and seasonal consistency in the feeding ecology of an opportunistic species, the yellow-legged gull Larus michahellis Filipe R. Ceia1,*, Vitor H. Paiva1, Vera Fidalgo1, Lurdes Morais2, Alexandra Baeta1, Paulo Crisóstomo2, Eduardo Mourato2, Stefan Garthe3, João C. Marques1, Jaime A. Ramos1 1Marine and Environmental Research Center (IMAR/CMA), Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal 2Institute of Nature Conservation and Forests (ICNF), 1169-230 Lisboa, Portugal 3Research and Technology Centre (FTZ), University of Kiel, Büsum 25761, Germany ABSTRACT: This study investigated the extent to which the plasticity of a generalist, opportunis- tic species allows individuals to shift their feeding ecology and foraging niche, throughout the annual cycle, and between 2 years of contrasting diet and oceanographic conditions during the breeding season. The spatio-temporal variations in the foraging niche of an overpopulated gull species — the yellow-legged gull Larus michahellis population at Berlenga Island (Portugal) — were assessed using blood (plasma and cells) and different feathers for stable isotope analyses (δ13C and δ15N) from 52 breeding adults in 2 consecutive years (2011 and 2012). In addition, GPS loggers were deployed on 11 individuals (and removed after several foraging trips) to infer the for- aging behaviour of this species during the incubation period. Results suggest inter-annual differ- ences in the feeding ecology and foraging behaviour of birds during the breeding season that were associated with the availability of food resources around the colony. Despite the high feeding plasticity and opportunistic behaviour of yellow-legged gulls, individual birds exhibited short- and long-term consistency in their feeding ecology, with exception of the period between winter and pre-laying.
    [Show full text]
  • Mediterranean Sea Turtles: Current Knowledge and Priorities for Conservation and Research
    Vol. 36: 229–267, 2018 ENDANGERED SPECIES RESEARCH Published August 1 https://doi.org/10.3354/esr00901 Endang Species Res OPEN ACCESS REVIEW Mediterranean sea turtles: current knowledge and priorities for conservation and research Paolo Casale1,*, Annette C. Broderick2, Juan Antonio Camiñas3,4, Luis Cardona5, Carlos Carreras6, Andreas Demetropoulos7, Wayne J. Fuller8, Brendan J. Godley2, Sandra Hochscheid9, Yakup Kaska10, Bojan Lazar11,12, Dimitris Margaritoulis13, Aliki Panagopoulou13,14, ALan F. Rees2,13, Jesús Tomás15, Oguz Türkozan16 1Department of Biology, University of Pisa, Via A. Volta 6, 56126 Pisa, Italy Addresses for other authors are given in the Supplement at www.int-res. com/ articles/suppl/ n036 p229 _ supp .pdf ABSTRACT: The available information regarding the 2 sea turtle species breeding in the Mediter- ranean (loggerhead turtle Caretta caretta and green turtle Chelonia mydas) is reviewed, including biometrics and morphology, identification of breeding and foraging areas, ecology and behaviour, abundance and trends, population structure and dynamics, anthropogenic threats and conserva- tion measures. Although a large body of knowledge has been generated, research efforts have been inconsistently allocated across geographic areas, species and topics. Significant gaps still exist, ranging from the most fundamental aspects, such as the distribution of major nesting sites and the total number of clutches laid annually in the region, to more specific topics like age at maturity, survival rates and behavioural ecology, especially for certain areas (e.g. south-eastern Mediterranean). These gaps are particularly marked for the green turtle. The recent positive trends of nest counts at some nesting sites may be the result of the cessation of past exploitation and decades of conservation measures on land, both in the form of national regulations and of con- tinued active protection of clutches.
    [Show full text]
  • *SEABIRD 23 TXT 18/4/11 10:29 Page 1
    *SEABIRD 23 TXT 18/4/11 10:29 Page 1 High importance of fish prey in the diet of Yellow-legged Gull chicks from the southeast Bay of Biscay High importance of fish prey in the diet of Yellow-legged Gull Larus michahellis chicks from the southeast Bay of Biscay Arizaga, J.1,2*, Aldalur, A.1, Herrero, A.1, Cuadrado, J. F.1, Mendiburu, A.1 and Sanpera, C.3 * Correspondence author. Email: [email protected] 1 Sociedad de Ciencias Aranzadi, Zorroagagaina 11, E-20014 Donostia-S. Sebastián, Spain; 2 Institut für Vogelforschung ‘Vogelwarte Helgoland’, An der Vogelwarte 21, D-26386 Wilhelmshaven, Germany; 3 Departamento de Biología Animal (Vertebrados), Facultad de Biología, Universidad de Barcelona, Av/ Diagonal 645, E-08028 Barcelona, Spain. Abstract The aim of the study was to describe Yellow-legged Gull Larus michahellis chick diet in the southeast Bay of Biscay. Sampling was carried out in three colonies (Ulía, Santa Clara, Guetaria) in Gipuzkoa, northern Iberia, during the breeding seasons of 2007 and 2008. Regurgitates (n = 70) were collected from chicks of c. 20 days old when they were ringed. Overall, 79 prey items were found, and each item was weighed and classified into one of the following prey-groups: marine (fish (Pisces), crab (Brachyura)), refuse tips (pork, beef, rabbit, chicken), terrestrial (earthworms (Lumbricinae), molluscs (Mollusca), insects (Insecta)), others (mainly vegetables or unidentified prey).The proportion of each prey-group did not differ from one year to the next and most prey was of marine origin (59.5%; all fish except for one crab), followed by refuse tips (22.8%), terrestrial (13.9%), and others (3.8%).These findings concur with those at colonies in northwest Iberia, and while local exceptions might occur, Yellow-legged Gull chick diet in northern Iberia is predominantly marine fish.
    [Show full text]