Distribution of Liocarcinus Depurator Along the Western Mediterranean Coast

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Liocarcinus Depurator Along the Western Mediterranean Coast DISTRIBUTION OF LIOCARCINUS DEPURATOR ALONG THE WESTERN MEDITERRANEAN COAST By Marta M. Rufino A thesis submitted to the University of Wales, Bangor. School of Ocean Sciences for the degree of Doctor in Philosophy This thesis is dedicated to my mum, without whom none would have been possible Summary The distribution of L. depurator has been analysed through classical statistics, linear models and geostatistics. Density was obtained from a ten-year time series of bottom, otter trawl surveys in eight areas along the Mediterranean coast of Spain. Two peaks of L. depura- tor occurrence were observed. The first (80% occurrence) between 51 and 150 m, and the other (66% occurrence) between 301 and 400 m. Below 500 m, crab occurrence was negligi- ble (<8%) and densities fell sharply. The pattern shown by crab densities closely shadows that of occurrence, although a second abundance peak was barely evident, and was located at 201- 300 m. From 200-400 m, crab abundance appeared fairly evenly distributed but showing lower densities than in shallower waters. Analysis through linear modelling showed that L. depurator density decreased signifi- cantly with depth and year, but no effect of sample location was evident. The decrease of L. depurator density was most pronounced at shallower depths (depths < 150 m, declining at ~8±1 % per annum), than in deeper waters (depths > 150 m, declining at ~4±1 % per annum). Geostatistical analysis of L. depurator densities showed that the crabs distributions ex- hibited varying degrees of spatial structure with patch sizes varying between 19 and 75 km among the sampled years. When average densities were low, crabs were most abundant in Ebro River Delta area and Western Alborán Sea, areas showing permanent high-density popu- lations. The virtues and drawbacks of each approach are discussed. On a smaller scale, off the Ebro Delta L. depurator distribution (numbers and biomass) was related to sediment characteristics using geostatistics. Smaller crabs were found preferen- tially in shallower water, whereas larger crabs, in deeper ones. Given the presence of at least two distinctive aggregations (possible populations) of L. depurator on the Spanish coast, a series of morphometric studies were undertaken. A combi- nation of traditional dimension analysis and geometric morphometry (whole shape analysis) was used to compare crab morphology. Differences in carapace shape were identified between genders and geographic location that largely appeared to involve the abdomen width. 1 of 213 Table of contents Summary ................................................................................................................................................. 1 Table of contents ..................................................................................................................................... 2 List of Figures.......................................................................................................................................... 5 List of Tables......................................................................................................................................... 10 Acknowledgements ............................................................................................................................... 12 I. General introduction ...................................................................................................................... 14 I-1. The distribution of Liocarcinus depurator ...................................................................... 14 I-2. Geographic distribution ................................................................................................... 14 I- 2.1. Geographic variation in crab abundances...................................................................... 15 I-3. Bathymetric distribution .................................................................................................. 18 I-4. Liocarcinus depurator spatial structure........................................................................... 21 I-5. Distribution in relation to habitat..................................................................................... 21 I-6. Inter-specific relationships in distribution ....................................................................... 23 I-7. Effects of fishing..............................................................................................................26 I-8. Objectives of the thesis.................................................................................................... 30 I- 8.1. Part I: Distribution of Liocarcinus depurator in the western Mediterranean coast of Spain: small and large scale approaches................................................................................... 30 I- 8.2. Part II: On the application of geometric morphometrics to the Liocarcinus depurator carapace.................................................................................................................................... 32 PART I. Distribution of Liocarcinus depurator in the western Mediterranean coast of Spain: small and large scale approaches. .......................................................................................................................... 35 II. Introduction to the surveys and characteristics of the Mediterranean coast of Spain................... 36 II-1. GEODELTA survey ........................................................................................................ 36 II- 1.1. Aims and protocol ........................................................................................................ 36 II- 1.2. Sediment variable measurements ................................................................................. 37 II-2. MEDITS: Mediterranean bottom trawl surveys .............................................................. 38 II- 2.1. Aims and protocol ........................................................................................................ 38 II- 2.2. MEDITS-es: Details of the Spanish survey.................................................................. 39 II-3. Characteristics of the sampled areas: the Mediterranean coast of Spain ......................... 47 III. Geographical, bathymetric, and inter-annual variability in distribution of Liocarcinus depurator (Brachyura: Portunidae) along a western Mediterranean coast......................................................... 56 III-1. Abstract............................................................................................................................ 56 III-2. Introduction...................................................................................................................... 56 III-3. Materials and methods..................................................................................................... 57 III- 3.1. Survey details.............................................................................................................. 57 III-4. Results ............................................................................................................................. 59 III-5. Occurrences .....................................................................................................................59 Geographical variability........................................................................................... 61 Interannual variability.............................................................................................. 61 III- 5.1. Density ........................................................................................................................ 64 Geographical variability........................................................................................... 65 Interannual variability.............................................................................................. 66 III- 5.2. Linear model of the densities ...................................................................................... 69 III-6. Discussion........................................................................................................................ 72 IV. Geostatistics ................................................................................................................................ 75 2 of 213 IV-1. Short introduction to geostatistics ....................................................................................75 IV- 1.1. Why perform a geostatistical analysis .........................................................................75 IV- 1.2. Variogram analysis......................................................................................................76 Experimental variogram ...........................................................................................76 IV- 1.3. Spatial covariance model parameters ..........................................................................78 IV- 1.4. Spatial covariance model function...............................................................................80 IV- 1.5. Fitting method..............................................................................................................81 IV- 1.6. Kriging interpolation ...................................................................................................83 IV-2. Geostatistical analysis applied to crustaceans ..................................................................84 IV- 2.1. Historical perspective ..................................................................................................84
Recommended publications
  • Supplementary Tales
    Metabarcoding reveals different zooplankton communities in northern and southern areas of the North Sea Jan Niklas Macher, Berry B. van der Hoorn, Katja T. C. A. Peijnenburg, Lodewijk van Walraven, Willem Renema Supplementary tables 1-5 Table S1: Sampling stations and recorded abiotic variables recorded during the NICO 10 expedition from the Dutch Coast to the Shetland Islands Sampling site name Coordinates (°N, °E) Mean remperature (°C) Mean salinity (PSU) Depth (m) S74 59.416510, 0.499900 8.2 35.1 134 S37 58.1855556, 0.5016667 8.7 35.1 89 S93 57.36046, 0.57784 7.8 34.8 84 S22 56.5866667, 0.6905556 8.3 34.9 220 S109 56.06489, 1.59652 8.7 35 79 S130 55.62157, 2.38651 7.8 34.8 73 S156 54.88581, 3.69192 8.3 34.6 41 S176 54.41489, 4.04154 9.6 34.6 43 S203 53.76851, 4.76715 11.8 34.5 34 Table S2: Species list and read number per sampling site Class Order Family Genus Species S22 S37 S74 S93 S109 S130 S156 S176 S203 Copepoda Calanoida Acartiidae Acartia Acartia clausi 0 0 0 72 0 170 15 630 3995 Copepoda Calanoida Acartiidae Acartia Acartia tonsa 0 0 0 0 0 0 0 0 23 Hydrozoa Trachymedusae Rhopalonematidae Aglantha Aglantha digitale 0 0 0 0 1870 117 420 629 0 Actinopterygii Trachiniformes Ammodytidae Ammodytes Ammodytes marinus 0 0 0 0 0 263 0 35 0 Copepoda Harpacticoida Miraciidae Amphiascopsis Amphiascopsis cinctus 344 0 0 992 2477 2500 9574 8947 0 Ophiuroidea Amphilepidida Amphiuridae Amphiura Amphiura filiformis 0 0 0 0 219 0 0 1470 63233 Copepoda Calanoida Pontellidae Anomalocera Anomalocera patersoni 0 0 586 0 0 0 0 0 0 Bivalvia Venerida
    [Show full text]
  • Marine ==- Biology © Springer-Verlag 1988
    Marine Biology 98, 39-49 (1988) Marine ==- Biology © Springer-Verlag 1988 Analysis of the structure of decapod crustacean assemblages off the Catalan coast (North-West Mediterranean) P. Abell6, F.J. Valladares and A. Castell6n Institute de Ciencias del Mar, Passeig Nacional s/n, E-08003 Barcelona, Spain Abstract Zariquiey Alvarez 1968, Garcia Raso 1981, 1982, 1984), as well as different biological aspects of the economically We sampled the communities of decapod crustaceans important species (Sarda 1980, Sarda etal. 1981, etc.). inhabiting the depth zone between 3 and 871 m off the More recently, some studies of the species distribution of Catalan coast (North-West Mediterranean) from June the decapod crustacean communities of the North-West 1981 to June 1983. The 185 samples comprised 90 species Mediterranean have been published (Sarda and Palo- differing widely in their depth distributions. Multivariate mera 1981, Castellon and Abello 1983, Carbonell 1984, analysis revealed four distinct faunistic assemblages, (1) Abello 1986). However, the quantitative composition of littoral communities over sandy bottoms, (2) shelf com­ the decapod crustacean communities of this area remain munities over terrigenous muds, (3) upper-slope com­ largely unknown, and comparable efforts to those of munities, and (4) lower-slope or bathyal communities. The Arena and Li Greci (1973), Relini (1981), or Tunesi (1986) brachyuran crab Liocarcinus depurator is the most abun­ are lacking. dant species of the shelf assemblage, although L. vernalis The present
    [Show full text]
  • The Incidence of Carcinonemertes Carcinophila (Kolliker) on Some Decapod Crustaceans from the Scottish West Coast
    OPHELIA 30 (3): 225-233 (September 1989) THE INCIDENCE OF CARCINONEMERTES CARCINOPHILA (KOLLIKER) ON SOME DECAPOD CRUSTACEANS FROM THE SCOTTISH WEST COAST C. A. Comely & A. D. Ansell Dunstaffnage Marine Laboratory, P. O. Box no. 3, Oban, Argyll, Scotland ABSTRACT From May 1985 until June 1987, decapod crustaceans in the Firth of Lome were caught monthly by creeling. Ovigerous animals were preserved, and the gills and egg masses examined for evidence of infestation by the nemertean parasite Carcinonemertes carcinophila. Samples of the gills from male and non-ovigerous female crabs were also retained, and examined for the encysted juvenile stage. In the early months of 1989, a few ovigerous Carcinus maenas obtained by diving were examined. Ovigerous Liocarcinuspuber and L. depurator were caught in small numbers, and both were infest­ ed with the parasite. In L. depurator the gills were heavily infested with the encysted juveniles, but few worms were found in the egg mass, 7 being the highest number in a single crab. In L. puber up to 25 worms were found in an individual crab, but the number of cysts in the gills was low. Only one ovigerous C. maenas was obtained by creeling; the egg mass contained only a few nemertines, and very few cysts were found on the gills. However, of the few shore crabs obtained by diving, one had the highest number of free-living worms found on an egg mass (42), but again very few cysts were found on the gills. Examination of the gills from male and non-ovigerous female crabs confirmed that C.
    [Show full text]
  • SNH Commissioned Report 940: Biological Analysis of Underwater
    Scottish Natural Heritage Commissioned Report No. 940 Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC COMMISSIONED REPORT Commissioned Report No. 940 Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC For further information on this report please contact: Morven Carruthers Scottish Natural Heritage Great Glen House INVERNESS IV3 8NW Telephone: 01463 725018 E-mail: [email protected] This report should be quoted as: Moore, C.G. 2016. Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC. Scottish Natural Heritage Commissioned Report No. 940. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2016. COMMISSIONED REPORT Summary Biological analysis of underwater video and infaunal data from surveys of the Moray Firth SAC Commissioned Report No. 940 Project No: 15846 Contractor: Dr Colin Moore Year of publication: 2016 Keywords Benthos; Moray Firth; SAC; video; grab; infauna; biotope. Background The aim of the current work was to increase understanding of the marine benthic habitats within the Moray Firth SAC through analysis of seabed video and still imagery collected at 30 sites in 2015 and by reanalysis of video footage from 228 sites and infaunal grab data from 30 sites collected in 2004. Main findings For each survey site the physical nature of the habitat and the species assemblage is described, together with ascription of the biotope.
    [Show full text]
  • Zoologische Mededelingen
    HoUHylb, \<] i^ / ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN WELZIJN, VOLKSGEZONDHEID EN CULTUUR) Deel 61 no. 1 4 maart 1987 ISSN 0024-0672 NECORA, A NEW GENUS OF EUROPEAN SWIMMING CRABS (CRUSTACEA DEC APOD A, PORTUNIDAE) AND ITS TYPE SPECIES, CANCER RUBER L., 1767 by L.B. HOLTHUIS Holthuis, L.B.: Necora, a new genus of European swimming crabs (Crustacea Decapoda, Por- tunidae) and its type species, Cancer puber L., 1767. Zooi. Med. Leiden 61 (1), 4-iii-1987: 1-14, fig. 1. — ISSN 0024-0672. Key words: Crustacea Decapoda; Portunidae: Necora nov. gen.; Cancer puber L. The new genus Necora is split off from the Portunid genus Liocarcinus Stimpson, 1871. A single species, Cancer puber L., 1767, is assigned to it. As the identity of Cancer puber L. is not certain (the original description fits Cancer corrugatus Pennant better) and as no type material is known to exist, a neotype specimen is selected so as to enable the specific name puber to be used for the species to which it has been applied for more than 150 years. L.B. Holthuis, Rijksmuseum van Natuurlijke Historic, Postbus 9517, 2300 RA Leiden, The Netherlands. CONTENTS Introduction 1 Necora new genus 3 Necora puber (L., 1767) 8 References 12 INTRODUCTION The small European swimming crabs, which before 1950 were generally known to European authors as Portunus, have a rather complicated tax- onomic and nomenclatural history. The very early authors (e.g., Linnaeus, 1767; Pennant, 1777; Herbst, 1782-1804) placed them in the genus Cancer, which then included all crabs.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • First Record of Dromia Neogenica Müller, 1979 (Decapoda, Brachyura, Dromiidae) from Neogene Strata in the Southern North Sea Basin
    FIRST RECORD OF DROMIA NEOGENICA MÜLLER, 1979 (DECAPODA, BRACHYURA, DROMIIDAE) FROM NEOGENE STRATA IN THE SOUTHERN NORTH SEA BASIN BY RENÉ H.B. FRAAIJE1,4), BARRY W.M. VAN BAKEL1,2,5) and JOHN W.M. JAGT3,6) 1) Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 Boxtel, The Netherlands 2) Nederlands Centrum voor Biodiversiteit (Naturalis), P.O. Box 9517, NL-2300 RA Leiden, The Netherlands 3) Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands ABSTRACT The sponge crab Dromia neogenica Müller, 1979 (Dromiidae) is recorded for the first time from strata of Neogene (late Miocene-early Pliocene) age in the southern North Sea Basin, on the basis of two concretion-preserved carapaces from Bemmel (north of Nijmegen, province of Gelderland, The Netherlands). The presence of this species, which was previously known from the middle-upper Miocene of Hungary and Algeria, suggests relatively higher seawater temperatures in the North Sea during the late Miocene-early Pliocene. Morphological differences (extraorbital and anterolateral teeth, development of cervical and branchiocardiac grooves) between D. neogenica and extant D. personata (Linnaeus, 1758) are relatively minor. This observation, coupled with the absence of the former species in mid-Pliocene and younger strata, and with the robust record of the latter in the mid-Pliocene to upper Pleistocene of Italy, would indicate that D. neogenica and D. personata are closely related, and probably represent the same lineage. RÉSUMÉ La dromie éponge Dromia neogenica Müller, 1979 (Dromiidae) est signalée pour la premiére fois dans les strates du Néogène (fin du Miocène-début du Pliocène) du sud du bassin de la mer du Nord.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Belgian Register of Marine Species
    BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ...........................................................................................................................................
    [Show full text]
  • Influence of Infection by Sacculina Carcini (Cirripedia, Rhizocephala)
    Journal of Experimental Marine Biology and Ecology 446 (2013) 209–215 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Influence of infection by Sacculina carcini (Cirripedia, Rhizocephala) on consumption rate and prey size selection in the shore crab Carcinus maenas Martin H. Larsen a, Jens T. Høeg b, Kim N. Mouritsen a,⁎ a Department of Bioscience, Marine Ecology, University of Aarhus, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark b Department of Biology, Marine Biology Section, University of Copenhagen, Universitetsparken 4, DK-2100 Copenhagen, Denmark article info abstract Article history: Parasites generally influence the feeding behavior of their host and may therefore indirectly impact ecosystem Received 26 March 2013 structure and functioning if the host plays an ecological key role. The ecologically important shore crab Received in revised form 30 May 2013 (Carcinus maenas) is commonly infected by the rhizocephalan parasite Sacculina carcini that aside from Accepted 31 May 2013 inflicting behavioral change, castration and ceased molting, also feminizes its male host morphologically. Available online xxxx The latter results in reduced cheliped size, and, together with the other parasite-induced effects, this may potentially impact host feeding behavior. In two separate laboratory experiments, we offered infected and Keywords: Community structure uninfected adult male crabs respectively ad libitum small, easy-to-handle blue mussels (Mytilus edulis) Feeding behavior (10–15 mm in shell-length), and a limited, size-structured prey population (15–45 mm in shell-length; Feminization seven size-classes, ten mussels per class) during 10–15 days.
    [Show full text]
  • (Marmara Sea) and Ecological Characteristics of Their Habitats
    RESEARCH ARTICLE Eur J Biol 2017; 76(1): 20-5 Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats Begum Ayfer, Husamettin Balkis, Aysegul Mulayim* Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Please cite this article as: Ayfer B, Balkis H, Mulayim A. Decapod Crustaceans in the Marmara Island (Marmara Sea) and Ecological Characteristics of Their Habitats. Eur J Biol 2017; 76(1): 20-5. ABSTRACT We have performed series of analyses to identify decapod crustaceans inhabiting the littoral zone of the Marmara Island and to study specific ecological characteristics of the habitat. Samples of decapod crustaceans species were collected from 12 stations (6 onshore, 6 offshore) on May 12-17, 2008 and November 17-22, 2008. A total of 17 species and 1199 specimens of decapod crustaceans were recorded. Eigth species (A. lacazei, N. norvegicus, P. bluteli, P. longimana, P. platycheles, D. pugilator, D. personata and L. vernalis) have been reported in the littoral zone of Marmara Island for the first time in this study. Also our study also sheds light on some ecological properties (temperature, salinity, dissolved oxygen) of the habitats of the species from the littoral zone of the Marmara Island. Keywords: Ecology, decapoda, crustacea, Marmara Island, The Sea of Marmara INTRODUCTION The first study at the island was carried out by Ostrou- moff (3,4) followed by studies by Okuş (5), Yüksek (6) The Archipelago in the Sea of Marmara consisting of and Balkıs (7). small and large islands located southwest of the Sea of Marmara and the northwest of the Kapıdağ Peninsula MATERIALS AND METHODS are referred to as the Islands of Marmara.
    [Show full text]
  • ICES Marine Science Symposia
    ICES mar. Sei. Symp., 199: 209-221. 1995 Decapod crustaceans in the diets of demersal fish in the Cantabrian Sea I. Olaso and E. Rodriguez-Marin Olaso, I., and Rodriguez-Marin, E. 1995. Decapod crustaceans in the diets of demer­ sal fish in the Cantabrian Sea. - ICES mar. Sei. Symp., 199: 209-221. The diets of 14 species of demersal fish, representing 81% of the fish biomass of the Cantabrian Sea (ICES Division VIIIc), were determined in the spring and autumn of 1988 from the analysis of 6536 stomachs. Decapod crustaceans represented 54.3% of the diet of these fish in frequency of occurrence and 22.1% in percentage by volume. The main prey taxa were: Solenocera membranacea, Alpeus glaber, the Crangonidae and Processidae families within the Natantia, the Paguridae and Galatheidae families within the Anomura, and Goneplax rhomboides and the Portunidae family within the Brachyura. Predator-prey linkages were described and each predator was assigned to the size group that would best demonstrate any size-related feeding pattern. I. Olaso and E. Rodriguez-Marin: Instituto Espanol de Oceanografia, Laboratorio Oceanogrâfico de Santander. Apdo240, 39080 Santander, Cantabria, Spain [tel: (+34) 42 2740431275033, fax: (+34) 42 275072], Introduction Studies of size, distribution, and abundance of prey and diet selection by predators were conducted because The Bay of Biscay forms a well-defined unit because of these parameters play a fundamental role in the selec­ its geographical location and semi-enclosed nature. The tion of diet and have the advantage of being easily southern part of this gulf, called the Cantabrian Sea, is a quantified (Murdoch and Oaken, 1975; Vince et al., transition zone and its fish and crustacean inhabitants 1976).
    [Show full text]