The Crustacean Society Mid-Year Meeting 2019

Total Page:16

File Type:pdf, Size:1020Kb

The Crustacean Society Mid-Year Meeting 2019 THE CRUSTACEAN SOCIETY MID-YEAR MEETING 2019 ABSTRACT BOOKLET Table of Contents PLENARY LECTURES ........................................................................................................... 1 ORAL PRESENTATIONS ...................................................................................................... 7 SYMPOSIUM 1: Frontiers in Crustacean Biology: Asian Perspectives ................................ 43 SYMPOSIUM 2: Recent Advances in Caridean Systematics ............................................... 53 SYMPOSIUM 3: Evolution and Ecology of Parasitic and Symbiotic Crustaceans ................ 59 SYMPOSIUM 4: Biology of Freshwater Crayfish ................................................................ 69 SYMPOSIUM 5: Deep-sea Biodiversity: A Crustacean Perspective .................................... 77 SYMPOSIUM 6: Comparative Endocrinology and Genomics in Arthropods ....................... 87 SYMPOSIUM 7: Fossil and Modern Clam Shrimp .............................................................. 97 SYMPOSIUM 8: Aquaculture Biotechnology of Crabs ..................................................... 108 POSTER PRESENTATIONS ............................................................................................... 114 PLENARY LECTURES PL1 Effects of temperature variations on reproduction: Transduction of physiological stress through species interactions between two porcelain crabs B. TSUKIMURA1, ALEX GUNDERSON2, JONATHON STILLMAN3 1. California State University, Fresno, USA 2. Tulane University, USA 3. San Francisco State University, USA Abstract Microclimatic variation has emerged as an important driver of many ecological and evolutionary processes. We measured fine-scale thermal variation in a common, species-rich, but rarely studied habitat with respect to temperature: the airspaces under rocks on intertidal zone boulder shores. Effects of thermal variation were investigated using physiological, behavioral, and demographic data on the porcelain crab Petrolisthes cinctipes. Demographic measurements showed clear body size trends, with large crabs underrepresented in the high intertidal zone. We calculated size-dependent and temperature-dependent aerobic metabolism for P. cinctipes in the intertidal zone based on our observed temperature distributions and found that metabolic expenditure for small crabs is similar between the high and low intertidal zones, but that large crabs should expend less energy in the high intertidal zone due to depressed aerobic metabolism in air. We also measured size-dependent heat tolerance and behavioral heat avoidance and found that large crabs are more heat sensitive. Thermal stress may force redistribution into cooler environments, which may threaten the fitness of its congener, P. manimaculus, through decreased reproductive output, measured by ELISA. Increased densities and thermal stress increased vitellin reactive material in P. manimaculus. These data suggest that the relocation of P. cinctipes into the lower intertidal can cause interspecific species interactions that are stressful for P. manimaculus at high densities, leading to resorption of oocytes. Interactions between fine-scale temperature variation and size-dependent thermal biology can have important consequences for the ecology of species, and is likely to influence how populations respond to changing conditions. 1 PL2 “Omics” analyses overcome the bottleneck in barnacle larval settlement study PEI-YUAN QIAN1, YUE HIM WONG 2 1. Department of Ocean Science and Division of Life Science, HKUST, HONG KONG SAR 2. Institute of Advanced Studies, Shenzhen University, Shen Zhen, CHINA Abstract Barnacle is the only sessile group among Crustacea. The development of the cyprid larvae is one of the major differences that distinguishes barnacles from other crustacean groups. At this larval stage, cyprids search for a suitable place to attach and the site of permanent attachment directly determines the fate of the post-attachment stages. Since 1995, our group has been focusing on understanding the mechanisms underlying the larval settlement process of barnacle cyprids. To overcome the limitations of conventional molecular approach, we applied high throughput “omics” approaches to develop in-house transcriptome and proteomic databases for different larval stages of the acorn barnacle Amphibalanus amphitrite. The “omics” approaches have greatly advanced our understanding of the molecular mechanisms of cyprid larval settlement, especially the crucial genes directly involved in the cementation process and the signal transduction pathways involves in regulating the settlement process. Here, we would like to provide an overview of our findings on the molecular mechanisms underlying the larval settlement, which demonstrates how “omics” approaches could assist the study of barnacle attachment cue, cementation and shell formation. 2 PL3 Systema Brachyurorum: 10 years of seismic changes and what more surprises can be expected PETER K. L. NG1 1. Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, SINGAPORE Abstract When Danièle Guinot, Peter Davie and I published Systema Brachyurorum in 2008, it was with the full knowledge that it was a provisional working document. We stated emphatically then that it must be regarded as a “work in progress” and we expected major changes in the years ahead. The brachyuran research community responded by using the catalogue. They analysed it, tested it, and developed new hypotheses to replace defunct ones. In the process, many mistakes were found. Anomalies were detected and most were eventually solved. Classifications used proved imprecise, incorrect or just outright wrong. All these scrutiny has been beneficial. When the list was published, we established the following statistics: 38 recognised superfamilies, 93 valid families, 1271 valid genera, 393 synonymised genera, 6793 recognised species and 1907 synonymised species. The tumultuous decade of change that followed changed the numbers substantially – the same statistics now stand at: 39 recognised superfamilies, 100 valid families, 1469 valid genera, 421 synonymised genera, 7532 recognised species and 2104 synonymised species. The number of genera and species have increased by 16% and 11%, respectively. This is a staggering increase in just 10 years - over a taxonomic history that spans 260 years! The new catalogue which we hope to publish in 2019 will be a very different document from the 2008 one. It will be a much better book. Even so, the new Systema Brachyurorum will continue to evolve. The new ideas we already know about and/or upcoming research developments demonstrate will change the classification even more. Exciting times ahead. 3 PL4 Heroes or villains? The role of crustaceans in biogeochemical cycles LEE, S.Y.1 1. Simon FS Li Marine Science Laboratory, School of Life Sciences, and Earth System Science Programme, The Chinese University of Hong Kong, Shatin, HONG KONG SAR Abstract Feeding and bioturbation activities of crustaceans not only shape the physical habitat structure, but also regulate important biogeochemical processes in their diverse range of habitats. Many terrestrial and intertidal crustaceans act as initial processors of low-quality vascular plant production, through enzymes produced endogenously or by symbiotic microbes. This adaptation connects the high productivity of vascular plants to secondary production at a rate far exceeding that via microbial decomposition. While the carbon requirement may be adequately met, it is intriguing how the nitrogen needs may be satisfied by this low-quality food. Deposit-feeding crustaceans process large volumes of sediment through their feeding activities, driving horizontal movement of sediments and associated materials (e.g. organic matter, pollutants). Bioturbation resulting from burrow construction and burying also drives vertical movement of sediment and materials. Burrows oxygenate anoxic sediments by substantially increasing the surface area and depth to which oxygen penetrates in otherwise compact substrates, also serving as potential conduits through which toxins and other biogeochemical species in the bulk anoxic sediment may be extracted and exported. This process may influence habitat productivity and explain the poorly understood fate of inorganic carbon (DIC and carbon greenhouse gases) in productive coastal wetlands such as mangrove forests. Some crustaceans even perform these regulating roles in extreme environments such as subterranean caves and hydrothermal vents. However, the exact role of crustaceans in modulating biogeochemical processes changes according to habitat type and feeding/bioturbation habits. Their value to the biotic community including humans also depends on the end point/ ecological service of interest. 4 PL5 Post-embryonic growth and development in hemianamorphic arthropods MELANIE J. HOPKINS1 1. Division of Paleontology, American Museum of Natural History, New York, New York, USA Abstract The final segmental composition of the body in many arthropods was attained during post- embryonic ontogeny through a series of molts. Hemianamorphic arthropods are characterized by undergoing a phase of molts during which new segments were added to the body followed by a phase during which molting continued without further increase in the number of body segments. Arthropods with this mode of segmentation occur across the phylum, and include some crustaceans but also myriapods and extinct
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: a Baseline Study
    diversity Article Diversity of Seagrass-Associated Decapod Crustaceans in a Tropical Reef Lagoon Prior to Large Environmental Changes: A Baseline Study Patricia Briones-Fourzán * , Luz Verónica Monroy-Velázquez, Jaime Estrada-Olivo y and Enrique Lozano-Álvarez Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Puerto Morelos, 77580 Quintana Roo, Mexico; [email protected] (L.V.M.-V.); [email protected] (J.E.-O.); [email protected] (E.L.-Á.) * Correspondence: [email protected] Current address: Calle Trasatlántico SM-18, Mz 24, Lote 12; Villas Morelos, Puerto Morelos, y 77580 Quintana Roo, Mexico. Received: 7 April 2020; Accepted: 19 May 2020; Published: 23 May 2020 Abstract: The community composition of decapods associated with subtidal tropical seagrass meadows was analyzed in a pristine reef lagoon on the Mexican Caribbean coast in the summer of 1995 and winter of 1998. The macrophyte community was dominated by Thalassia testudinum followed by Syringodium filiforme, with interspersed rhyzophytic macroalgae and large patches of drift algae. In each season, 10 one-min trawls were made with an epibenthic sled (mesh aperture 1 mm) during the day and 10 during the night on each of five sites. In all, 53,211 decapods belonging to 119 species were collected. The most diverse taxa were Brachyura and Caridea, but the most abundant were Caridea and Anomura. Dominance was high, with three species (Latreutes fucorum, Cuapetes americanus, and Thor manningi) accounting for almost 50% of individuals, and 10 species accounting for nearly 90% of individuals. There was great similarity in community composition and ecological indices between seasons, but significantly more individuals and species in night versus day samples.
    [Show full text]
  • Pachygrapsus Transversus
    Population biology of two sympatric crabs: Pachygrapsus transversus (Gibbes, 1850) (Brachyura, Grapsidae) and Eriphia gonagra (Fabricius, 1781) (Brachyura, Eriphidae) in reefs of Boa Viagem beach, Recife, Brazil MARINA DE SÁ LEITÃO CÂMARA DE ARAÚJO¹*, DAVID DOS SANTOS AZEVEDO², JULIANE VANESSA CARNEIRO DE LIMA SILVA3, CYNTHIA LETYCIA FERREIRA PEREIRA1 & DANIELA DA SILVA CASTIGLIONI4,5 1. Universidade de Pernambuco (UPE), Coleção Didática de Zoologia (CDZ/UPE), Faculdade de Ciências, Educação e Tecnologia (FACETEG), Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105, São José, CEP 55290-000, Garanhuns, PE. 2. Instituto Federal de Educação Ciência e Tecnologia de Pernambuco (IFPE), Av. Prof. Luiz Freire, 500, Cidade Universitária, CEP 55740-540, Recife, PE. 3. Universidade Federal de Pernambuco (UFPE), Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Departamento de Zoologia, Av. Professor Moraes Rego, s-n, Cidade Universitária, CEP 50670-901, Recife, PE. 4. Universidade Federal de Santa Maria (UFSM), Departamento de Zootecnia e Ciências Biológicas, Campus de Palmeira das Missões, Avenida Independência, 3751, Bairro Vista Alegre, CEP 983000-000, Palmeira das Missões, RS. 5. Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Prédio 17, sala 1140-D, Cidade Universitária, Camobi, km 9, Santa Maria, RS. *Corresponding author: [email protected] Abstract. This study characterizes the population biology of two crabs: Pachygrapsus transversus and Eriphia gonagra from reefs at Boa Viagem Beach, Pernambuco. Carapace width (CW) was measured and all animals were sexed. A total of 1.174 specimens of P. transversus and 558 specimens of E. gonagra were sampled.
    [Show full text]
  • W7192e19.Pdf
    click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating.
    [Show full text]
  • A New Species of Squat Lobster of the Genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea
    ZooKeys 935: 25–35 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.935.51931 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of squat lobster of the genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea Paula C. Rodríguez-Flores1,2, Enrique Macpherson1, Annie Machordom2 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. acc. Cala Sant Francesc 14 17300 Blanes, Girona, Spain 2 Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain Corresponding author: Paula C. Rodríguez-Flores ([email protected]) Academic editor: I.S. Wehrtmann | Received 10 March 2020 | Accepted 2 April 2020 | Published 21 May 2020 http://zoobank.org/E2D29655-B671-4A4C-BCDA-9A8D6063D71D Citation: Rodríguez-Flores PC, Macpherson E, Machordom A (2020) A new species of squat lobster of the genus Hendersonida (Crustacea, Decapoda, Munididae) from Papua New Guinea. ZooKeys 935: 25–35. https://doi. org/10.3897/zookeys.935.51931 Abstract Hendersonida parvirostris sp. nov. is described from Papua New Guinea. The new species can be distin- guished from the only other species of the genus, H. granulata (Henderson, 1885), by the fewer spines on the dorsal carapace surface, the shape of the rostrum and supraocular spines, the antennal peduncles, and the length of the walking legs. Pairwise genetic distances estimated using the 16S rRNA and COI DNA gene fragments indicated high levels of sequence divergence between the new species and H. granulata. Phylogenetic analyses, however, recovered both species as sister species, supporting monophyly of the genus. Keywords Anomura, mitochondrial genes, morphology, West Pacific Introduction Squat lobsters of the family Munididae Ahyong, Baba, Macpherson & Poore, 2010 are recognised by the trispinose or trilobate front, usually composed of a slender rostrum flanked by supraorbital spines (Ahyong et al.
    [Show full text]
  • First Record of the Snapping Shrimp, Automate Branchialis Holthuis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2017 Band/Volume: 040 Autor(en)/Author(s): Cesena Feliza, Geiselbrecht Hannes, Heß [Hess] Martin, Landmann Sebastian, Lehmann Tobias, Mavric Borut, Melzer Roland R., Meyer Roland, Pfannkuchen Martin, Bursic Moira Artikel/Article: First record of the snapping shrimp, Automate branchialis Holthuis & Gottlieb, 1958 for Croatian waters (Decapoda, Alpheidae) 36 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 40 1 36 München, August 2017 ISSN 0341-8391 Scientific note First record of the snapping shrimp, Automate branchialis Holthuis & Gottlieb, 1958 for Croatian waters (Decapoda, Alpheidae) Feliza Ceseña*, Hannes Geiselbrecht*, Martin Heß**, Sebastian Landmann*, Tobias Lehmann*, **, Borut Mavric***, Roland R. Melzer*, **, Roland Meyer*, Martin Pfannkuchen**** & Moira Bursic***** The impact of substantially detrimental anthropogenic activities such as eutrophication, sewage discharge, in- organic pollution, etc., has put the future of Mediter- ranean biodiversity at stake. This calls for a dramatic increase in conservation efforts. Brijuni National Park is one of the few marine protected areas (MPAs) in the Northern Adriatic, i. e. one of the most polluted parts of the Mediterranean. Bio-inventories are needed to assess * the conservation outcome of this small, but historic A B MPA. In our first survey of the area using minimally Fig. 1. Automate branchialis from Brijuni MPA, extended invasive data acquisition methods, we found indications depth of field photos (ZSMA20160784). A. Dorsal view of high decapod species richness (Melzer et al. 2016). of anterior body section with deeply concave carapace A more recent second field campaign has increased the margin and short, pointy rostrum (arrow).
    [Show full text]
  • Prawn Fauna (Crustacea: Decapoda) of India - an Annotated Checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean Prawns
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2012.54.1.01697-08 Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Penaeoid, Sergestoid, Stenopodid and Caridean prawns E. V. Radhakrishnan*1, V. D. Deshmukh2, G. Maheswarudu3, Jose Josileen 1, A. P. Dineshbabu4, K. K. Philipose5, P. T. Sarada6, S. Lakshmi Pillai1, K. N. Saleela7, Rekhadevi Chakraborty1, Gyanaranjan Dash8, C.K. Sajeev1, P. Thirumilu9, B. Sridhara4, Y Muniyappa4, A.D.Sawant2, Narayan G Vaidya5, R. Dias Johny2, J. B. Verma3, P.K.Baby1, C. Unnikrishnan7, 10 11 11 1 7 N. P. Ramachandran , A. Vairamani , A. Palanichamy , M. Radhakrishnan and B. Raju 1CMFRI HQ, Cochin, 2Mumbai RC of CMFRI, 3Visakhapatnam RC of CMFRI, 4Mangalore RC of CMFRI, 5Karwar RC of CMFRI, 6Tuticorin RC of CMFRI, 7Vizhinjam RC of CMFRI, 8Veraval RC of CMFRI, 9Madras RC of CMFRI, 10Calicut RC of CMFRI, 11Mandapam RC of CMFRI *Correspondence e-mail: [email protected] Received: 07 Sep 2011, Accepted: 15 Mar 2012, Published: 30 Apr 2012 Original Article Abstract Many penaeoid prawns are of considerable value for the fishing Introduction industry and aquaculture operations. The annual estimated average landing of prawns from the fishery in India was 3.98 The prawn fauna inhabiting the marine, estuarine and lakh tonnes (2008-10) of which 60% were contributed by freshwater ecosystems of India are diverse and fairly well penaeid prawns. An additional 1.5 lakh tonnes is produced from known. Significant contributions to systematics of marine aquaculture. During 2010-11, India exported US $ 2.8 billion worth marine products, of which shrimp contributed 3.09% in prawns of Indian region were that of Milne Edwards (1837), volume and 69.5% in value of the total export.
    [Show full text]
  • 2019 China Military Power Report
    OFFICE OF THE SECRETARY OF DEFENSE Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China ANNUAL REPORT TO CONGRESS Military and Security Developments Involving the People’s Republic of China 2019 Office of the Secretary of Defense Preparation of this report cost the Department of Defense a total of approximately $181,000 in Fiscal Years 2018-2019. This includes $12,000 in expenses and $169,000 in DoD labor. Generated on 2019May02 RefID: E-1F4B924 OFFICE OF THE SECRETARY OF DEFENSE Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China OFFICE OF THE SECRETARY OF DEFENSE Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2019 A Report to Congress Pursuant to the National Defense Authorization Act for Fiscal Year 2000, as Amended Section 1260, “Annual Report on Military and Security Developments Involving the People’s Republic of China,” of the National Defense Authorization Act for Fiscal Year 2019, Public Law 115-232, which amends the National Defense Authorization Act for Fiscal Year 2000, Section 1202, Public Law 106-65, provides that the Secretary of Defense shall submit a report “in both classified and unclassified form, on military and security developments involving the People’s Republic of China. The report shall address the current and probable future course of military-technological development of the People’s Liberation Army and the tenets and probable development of Chinese security strategy and military strategy, and of the military organizations and operational concepts supporting such development over the next 20 years.
    [Show full text]
  • Australian Trade and Investment Commission Annual Report 2018–19 Australian Trade and Investment Commission Annual Report 2018–19
    ANNUAL REPORT 2018–19 Austrade at a glance WHO ARE WE? OUR STAFF We are the Australian Trade and Investment Commission—or Austrade Austrade—and we’re responsible for promoting Australian trade, staff at investment and education to the world. We help Australian 1,073 30 June 2019, businesses grow by linking them to global export opportunities; 65 per cent of whom were we attract international investment to help Australia reach its employed in client-focused economic potential; we help startups innovate and go global and operations in Australia and we promote Australia’s leading-edge education services to the overseas. Staff turnover was world to help drive growth in this sector. Our tourism policy and 11.9 per cent and the gender programs also help to build a thriving tourism industry. balance was 58 per cent female and 42 per cent male. We also help Australian citizens by providing consular and passport services in designated overseas locations. WHERE WE WORK locations at OUR MISSION 117 30 June 2019, Our mission is to promote Australian exports and international including 79 overseas locations education, strengthen Australia’s tourism sector, and attract in 48 markets, with 14 of investment into Australia. We do this by providing quality advice those locations also providing and services to exporters, education institutions and investors, consular services on behalf including generating market information and insights, promoting of the Australian Government. Australian capabilities, making connections through an extensive Within Australia, Austrade had global network of contacts, leveraging the ‘badge of government’ 10 offices, complemented by a offshore, and working collaboratively with partner organisations.
    [Show full text]
  • Phylogenetics of the Brachyuran Crabs (Crustacea: Decapoda): the Status of Podotremata Based on Small Subunit Nuclear Ribosomal RNA
    Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 45 (2007) 576–586 www.elsevier.com/locate/ympev Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA Shane T. Ahyong a,*, Joelle C.Y. Lai b, Deirdre Sharkey c, Donald J. Colgan c, Peter K.L. Ng b a Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, Private Bag 14901 Kilbirnie, Wellington, New Zealand b School of Biological Sciences, National University of Singapore, Kent Ridge, Singapore c Australian Museum, 6 College Street, Sydney, NSW 2010, Australia Received 26 January 2007; revised 13 March 2007; accepted 23 March 2007 Available online 13 April 2007 Abstract The true crabs, the Brachyura, are generally divided into two major groups: Eubrachyura or ‘advanced’ crabs, and Podotremata or ‘primitive’ crabs. The status of Podotremata is one of the most controversial issues in brachyuran systematics. The podotreme crabs, best recognised by the possession of gonopores on the coxae of the pereopods, have variously been regarded as mono-, para- or polyphyletic, or even as non-brachyuran. For the first time, the phylogenetic positions of the podotreme crabs were studied by cladistic analysis of small subunit nuclear ribosomal RNA sequences. Eight of 10 podotreme families were represented along with representatives of 17 eubr- achyuran families. Under both maximum parsimony and Bayesian Inference, Podotremata was found to be significantly paraphyletic, comprising three major clades: Dromiacea, Raninoida, and Cyclodorippoida. The most ‘basal’ is Dromiacea, followed by Raninoida and Cylodorippoida. Notably, Cyclodorippoida was identified as the sister group of the Eubrachyura.
    [Show full text]
  • Symposium Full Program
    11.4 Center for Condensed Matter Sciences, NTU 11.5-6 Howard Civil Service International House 2019 Organizer Ecological Engineering Research Center, National Taiwan University Co-Organizers College of Bioresources and Agriculture, National Taiwan University Wisdom Informatics Solutions for Environment Co., Ltd Symposium Program Sponsors Biodiversity Research Center, Academia Sinica The Japanese Association of Benthology Marine National Park Headquartrers, Taiwan Ministry of Science and Technology, Taiwan The Plankton Society of Japan Ocean Conversation Administration, Ocean Affairs Council, Taiwan Contents Welcome Messages .........................................................................2 More Welcomes and Greetings from Previous AMBS Chairmans .................................................3 Symposium Schedule ......................................................................7 Conference Information ................................................................8 Symposium Venue Map ..................................................................9 Information for the Presenters .................................................11 Student Presentation Contest Rules .......................................12 Presentation Schedule .................................................................13 Poster Presentation Schedule ...................................................20 Keynote Speaker Abstracts & Biographies ............................25 Organizers and Sponsors.............................................................32
    [Show full text]