A Controlled Study of the Flipped Classroom with Numerical Methods for Engineers

Total Page:16

File Type:pdf, Size:1020Kb

A Controlled Study of the Flipped Classroom with Numerical Methods for Engineers Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 A Controlled Study of the Flipped Classroom With Numerical Methods for Engineers Jacob L. Bishop Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Engineering Education Commons Recommended Citation Bishop, Jacob L., "A Controlled Study of the Flipped Classroom With Numerical Methods for Engineers" (2013). All Graduate Theses and Dissertations. 2008. https://digitalcommons.usu.edu/etd/2008 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. A CONTROLLED STUDY OF THE FLIPPED CLASSROOM WITH NUMERICAL METHODS FOR ENGINEERS by Jacob L. Bishop A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Engineering Education Approved: Dr. Gilberto E. Urroz Dr. Matthew A. Verleger Major Professor Committee Member Dr. Oenardi Lawanto Dr. Ning Fang Committee Member Committee Member Dr. Christian Geiser Dr. Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii Copyright c Jacob L. Bishop 2013 All Rights Reserved iii Abstract A Controlled Study of the Flipped Classroom with Numerical Methods for Engineers by Jacob L. Bishop, Doctor of Philosophy Utah State University, 2013 Major Professor: Dr. Gilberto E. Urroz Department: Engineering Education Recent advances in technology and ideology have unlocked entirely new directions for education research. Mounting pressure from increasing tuition costs and free, online course offerings are opening discussion and catalyzing change in the physical classroom. The flipped classroom is at the center of this discussion. The flipped classroom is a new pedagogi- cal method, which employs asynchronous video lectures, practice problems as homework, and active, group-based problem-solving activities in the classroom. It represents a unique combination of learning theories once thought to be incompatible—active, problem-based learning activities founded upon constructivist schema and instructional lectures derived from direct instruction methods founded upon behaviorist principles. The primary rea- son for examining this teaching method is that it holds the promise of delivering the best from both worlds. A controlled study of a sophomore-level numerical methods course was conducted using video lectures and model-eliciting activities (MEAs) in one section (treat- ment) and traditional group lecture-based teaching in the other (comparison). This study compared knowledge-based outcomes on two dimensions: conceptual understanding and conventional problem-solving ability. Homework and unit exams were used to assess con- ventional problem-solving ability, while quizzes and a conceptual test were used to measure iv conceptual understanding. There was no difference between sections on conceptual under- standing as measured by quizzes and concept test scores. The difference between average exam scores was also not significant. However, homework scores were significantly lower by 15.5 percentage points (out of 100), which was equivalent to an effect size of 0.70. This difference appears to be due to the fact that students in the MEA/video lecture section had a higher workload than students in the comparison section and consequently neglected to do some of the homework because it was not heavily weighted in the final course grade. A comparison of student evaluations across the sections of this course revealed that perceptions were significantly lower for the MEA/video lecture section on 3 items (out of 18). Based on student feedback, it is recommended that future implementations ensure tighter integration between MEAs and other required course assignments. This could involve using a higher number of shorter MEAs and more focus on the early introduction of MEAs to students. (283 pages) v Public Abstract A Controlled Study of the Flipped Classroom with Numerical Methods for Engineers by Jacob L. Bishop, Doctor of Philosophy Utah State University, 2013 Major Professor: Dr. Gilberto E. Urroz Department: Engineering Education Recent advances in technology and new ways of using it have led to new possibilities for education research. Increasing tuition costs and free, online course offerings are two influ- ences that have led researchers to re-consider the wisdom of conventional teaching methods and to consider alternatives. The flipped classroom is a new teaching method, which uses video lectures and practice problems as homework, while group-based problem-solving ac- tivities are used in the classroom. It combines aspects of two learning theories once thought to be incompatible—constructivism and behaviorism. Active, problem-based learning activ- ities are based on the theories of constructivism, and direct instructional (video) lectures a based on behaviorist principles. The main reason for studying the flipped classroom is that it can potentially deliver the best from both worlds. A controlled study of students taking a second-year university course in numerical methods was conducted that used video lec- tures and model-eliciting activities (MEAs) in one section (treatment) and traditional group lecture-based teaching in the other (comparison). This study compared knowledge in two areas: conceptual understanding and conventional problem-solving ability. Homework and unit exams were used to measure conventional problem-solving ability, while quizzes and a conceptual test were used to measure conceptual understanding. No difference was found between the two sections on conceptual understanding (measured by quiz and concept test vi scores). No difference in exam scores was found, either. However, homework scores were 15.5 percentage points (out of 100) lower for the comparison section, which is considered to be a large difference. This difference is probably due to the fact that students in the treat- ment section had a higher workload than students in the comparison section and did not complete some of the homework because it did not count very much toward the final course grade (5% out of 100%). Student responses to an opinion-based survey of the class were also compared. Students in the treatment section gave lower ratings for the course than students in the comparison section on 3 out of 18 items. The responses on the remaining 15 items were indistinguishable. Based on student comments about the course, it was recommended that future studies make sure there is tighter integration between in-class group activities (MEAs) and other assignments. This might involve shortening the length of group problems so that more problems can be solved in the same time. It should also include more guidance for students during early stages of group problem solving, and a better explanation of why solving MEAs will help students in their future careers. vii Acknowledgments First, I would like to thank Dr. Matthew Verleger for his continued support throughout the course of my doctoral studies. He has guided me throughout this process as an advisor, mentor, and friend. Even after accepting a position elsewhere, he has continued to advise me, and to show genuine interest in my success. Next, I would like to express my gratitude to my major professor, Dr. Gilberto Urroz. Even though I did not begin my studies under his direction, he willingly adopted me as his own student. Without his guidance and instruction (both to me, and the students in this study), this dissertation would certainly still be a work in progress. Third, I would like to thank Dr. Christian Geiser. One of the worst things that can happen to a graduate student is for him to lose his funding halfway through the course of his studies. Whether by a miracle of fate or simply fortunate circumstance, I began working with Dr. Christian Geiser just as I was approaching a financial dead end. This experience has been both financially beneficial and intellectually stimulating. The experience I have gained working with Dr. Geiser has opened a research path I will likely continue throughout my future career. Fourth, I am grateful for the helpful suggestions of Dr. Ning Fang and Dr. Oenardi Lawanto. In particular, I appreciate the global view that Dr. Lawanto tends to take. His suggestions on how to diagram and organize research literature have been particularly beneficial. Finally, and most of all, I would like to thank my wife, Shelly, for all of the patience, love, and encouraging support she has given me throughout this journey. Jacob L. Bishop viii Contents Page Abstract ::::::::::::::::::::::::::::::::::::::::::::::::::::::: iii Public Abstract ::::::::::::::::::::::::::::::::::::::::::::::::: v Acknowledgments :::::::::::::::::::::::::::::::::::::::::::::::: vii List of Tables ::::::::::::::::::::::::::::::::::::::::::::::::::: xi List of Figures :::::::::::::::::::::::::::::::::::::::::::::::::: xii 1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.1 Motivation . .1 1.2 Purpose Statement . .5 1.3 Defining the Flipped Classroom . .5 1.4 Educational Effectiveness and the Flipped Classroom . .7 1.4.1 Knowledge Outcomes of Student Learning . .8 1.4.2 Student Perceptions . .9 1.5 Research Questions . 10 1.6 Dissertation Outline . 10 2 Literature
Recommended publications
  • Sage: Unifying Mathematical Software for Scientists, Engineers, and Mathematicians
    Sage: Unifying Mathematical Software for Scientists, Engineers, and Mathematicians 1 Introduction The goal of this proposal is to further the development of Sage, which is comprehensive unified open source software for mathematical and scientific computing that builds on high-quality mainstream methodologies and tools. Sage [12] uses Python, one of the world's most popular general-purpose interpreted programming languages, to create a system that scales to modern interdisciplinary prob- lems. Sage is also Internet friendly, featuring a web-based interface (see http://www.sagenb.org) that can be used from any computer with a web browser (PC's, Macs, iPhones, Android cell phones, etc.), and has sophisticated interfaces to nearly all other mathematics software, includ- ing the commercial programs Mathematica, Maple, MATLAB and Magma. Sage is not tied to any particular commercial mathematics software platform, is open source, and is completely free. With sufficient new work, Sage has the potential to have a transformative impact on the compu- tational sciences, by helping to set a high standard for reproducible computational research and peer reviewed publication of code. Our vision is that Sage will have a broad impact by supporting cutting edge research in a wide range of areas of computational mathematics, ranging from applied numerical computation to the most abstract realms of number theory. Already, Sage combines several hundred thousand lines of new code with over 5 million lines of code from other projects. Thousands of researchers use Sage in their work to find new conjectures and results (see [13] for a list of over 75 publications that use Sage).
    [Show full text]
  • Titular Capítulo
    Jornadas In-Red 2014 Universitat Politècnica de València Doi************** Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial Asunción Santafé Morosa, José M. Gozálvez Zafrillaa, Javier Navarro Laboulaisa, Salvador Cardona Navarretea, Rafael Miró Herreroa, Juan Carlos García Díazb a Departamento de Ingeniería Química y Nuclear, Universitat Politècnica de Valencia, [email protected] b Departamento de Estadística e Investigación Operativa, Universitat Politècnica de Valencia. Resumen En este trabajo se presentan las experiencias de utilización de software libre y gratuito llevadas a cabo por el Equipo de Innovación y Calidad Educativa ASEI (Aplicación de la Simulación en la Enseñanza de la Ingeniería) en asignaturas de las áreas de Ingeniería Química, Nuclear y Estadística que requieren la utilización de software de cálculo y herramientas de simulación. El software libre puede ser utilizado como una herramienta en metodologías docentes basadas en el uso de la simulación en el aula de teoría o bien como una forma de disminuir los costes en la enseñanza y aportar nuevos valores. Adecuadamente empleadas, las metodologías basadas en el uso de programas de simulación pueden estimular la capacidad de autoaprendizaje del alumno. En esta comunicación se muestran ejemplos del amplio abanico de aplicaciones de software que se pueden utilizar sin representar coste para la Universidad y posteriormente para la empresa. Palabras clave: competencias, formación, metodologías activas, simulación, software libre. 2014, Universitat Politècnica de València 1 I Jornadas In-Red (2014): 1-9 Experiencias de aplicación de la simulación empleando software libre y gratuito en la enseñanza de las ingenierías de la rama industrial 1.
    [Show full text]
  • Linux Mint Debian Edition (LMDE) Di Giorgio Beltrammi
    Guida a Linux Mint Debian Edition Guida a Linux Mint Debian Edition (LMDE) di Giorgio Beltrammi 1 2 Guida a Linux Mint Debian Edition 3 4 Guida a Linux Mint Debian Edition INDICE INTRODUZIONE ¼................................. 9 Note di Consultazione ¼........................ 9 Linux Mint Debian Edition ¼.................... 11 Per utenti Windows ¼........................... 17 DOWNLOAD & MASTERIZZAZIONE .................... 23 Download & Masterizzazione ¼................... 23 Download....................................... 25 Checksum....................................... 27 LIVE & INSTALLAZIONE ¼......................... 29 Cos©è un sistema Live.......................... 29 Partizionamento ¼.............................. 33 Installazione ¼................................ 39 Postinstallazione.............................. 47 Personalizzare Mint............................ 53 PERSONALE...................................... 61 Applicazioni d©avvio ¼......................... 61 Applicazioni preferite......................... 65 Gestione File.................................. 67 Scorciatoie Tastiera.......¼................... 69 Tecnologie Assistive........................... 71 ASPETTO & STILE................................ 73 Aspetto........................................ 73 Impostazioni del Desktop....................... 79 Menu Principale................................ 81 Salvaschermo................................... 85 INTERNET & RETE................................ 87 Bluetooth...................................... 87 5 Condivisione
    [Show full text]
  • Methods of Using Mobile Internet Devices in the Formation of The
    217 Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects Yevhenii O. Modlo1[0000-0003-2037-1557], Serhiy O. Semerikov2,3,4[0000-0003-0789-0272], Stanislav L. Bondarevskyi3[0000-0003-3493-0639], Stanislav T. Tolmachev3[0000-0002-5513-9099], Oksana M. Markova3[0000-0002-5236-6640] and Pavlo P. Nechypurenko2[0000-0001-5397-6523] 1 Kryvyi Rih Metallurgical Institute of the National Metallurgical Academy of Ukraine, 5, Stephana Tilhy Str., Kryvyi Rih, 50006, Ukraine [email protected] 2 Kryvyi Rih State Pedagogical University, 54, Gagarina Ave., Kryvyi Rih, 50086, Ukraine [email protected], [email protected] 3 Kryvyi Rih National University, 11, Vitaliy Matusevych Str., Kryvyi Rih, 50027, Ukraine [email protected], [email protected], [email protected] 3 Institute of Information Technologies and Learning Tools of NAES of Ukraine, 9, M. Berlynskoho Str., Kyiv, 04060, Ukraine Abstract. An analysis of the experience of professional training bachelors of electromechanics in Ukraine and abroad made it possible to determine that one of the leading trends in its modernization is the synergistic integration of various engineering branches (mechanical, electrical, electronic engineering and automation) in mechatronics for the purpose of design, manufacture, operation and maintenance electromechanical equipment. Teaching mechatronics provides for the meaningful integration of various disciplines of professional and practical training bachelors of electromechanics based on the concept of modeling and technological integration of various organizational forms and teaching methods based on the concept of mobility. Within this approach, the leading learning tools of bachelors of electromechanics are mobile Internet devices (MID) – a multimedia mobile devices that provide wireless access to information and communication Internet services for collecting, organizing, storing, processing, transmitting, presenting all kinds of messages and data.
    [Show full text]
  • Design and Implementation of a Modern Algebraic Manipulator for Celestial Mechanics
    Design and implementation of a modern algebraic manipulator for Celestial Mechanics Francesco Biscani January 30, 2008 “Design and implementation of a modern algebraic manipulator for Celestial Me- chanics”, by Francesco Biscani ([email protected]), is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). Copyright © 2007 by Francesco Biscani. Created with LYX and X TE EX. Dedicata alla memoria di Elisa. Summary¹ e goals of this research are the design and implementation of a modern and efficient algebraic manipulator specialised for Celestial Mechanics. Specialised algebraic manipulators are funda- mental tools both in classical Celestial Mechanics and in modern studies on the behaviour of dynamical systems, and they are routinely employed in such diverse tasks as the elaboration of theories of motion of celestial bodies, geodetical and terrestrial orientation studies, perturbation theories for artificial satellites and studies about the long-term evolution of the Solar System. Specialised manipulators for Celestial Mechanics are usually concerned with mathematical objects known as Poisson series (see Danby et al. [1966]), which are defined as multivariate Fourier series with multivariate Laurent series as coefficients: X ( ) cos P (i1y1 + i2y2 + ... + inyn) , i sin i where the Pi are multivariate polynomials. Poisson series manipulators have been developed continuously since the ’60s and today there are many different packages available (an incomplete list includes Herget and Musen [1959], Broucke and Garthwaite [1969], Jefferys [1970, 1972], Rom [1970], Bourne and Horton [1971], Babaev et al. [1980], Dasenbrock [1982], Richardson [1989], Abad and San-Juan [1994], Ivanova [1996], Chapront [2003b,a] and Gastineau and Laskar [2005]).
    [Show full text]
  • Vlab Academic – Access on the Web with Your PC/Mac/Smartphone/Tablet
    Vlab Academic – Access on the Web with your PC/Mac/Smartphone/Tablet Goal – access to many academic applications from on or offsite using a Mac, PC or smartphone or tablet. Three Access Options 1. *New* Log in directly from a web browser 2. Download VMware on PC or Mac 3. Install free app in smartphone or tablet Examples of Accessible Clinical Applications General Open Vlabs – Adobe, Assistive applications, Claro Apps, Dragon, Echo, Kurzweil, JAWS, AppXtender, EndNote, Maple, Office, RStudio, SAS, SPSS, Stata, and many more. Business College Vlabs – Adobe, Arena, Creative Cloud, Digital editions, Office, Evergreen, EView, SPSS, Putty, SAP. Education Vlabs – Atlas.Ti, VLC, 7-zip, Adobe Reader, Adobe Flash, Facets, IBM AMOS 22, SPSS, IHMC Cmaptools, Inspiration 9, InspireData, Kidspiration 3, Paint.net, Quicktime 7, Shotcut, Winsteps, iTunes, VLC, NVivo. Engineering Vlabs – Adobe, AutoDesk Apps, ApsenTech, Bentley Software, SolidWorks, MSC.Adams, ASHRAE Psychrometrics, COMSOL, DipTrace, Eclipse for Java, Keil uVision, MATLAB, Minitab, MathCAD, Office, VisualStudio, WarGUI, WinEST College of Arts and Letters Vlabs – Adobe, Audacity, ArcGIS, ENVI, ERDAS, FragStats, Gauss, GeoDA, GeoGebra, Google Earth, GRASS GIS, QRS-II &GNE, Maple, Matlab, MikeTeX, MiniTab, Notepad++, Office, Python, Python Anaconda, Putty, QGIS, R, R Studio, SAS, SMath Studio, SPSS, Stata, TexMaker, TeXnicCenter, WinSCP, WinShell, Wolfram CDF Player, VLC Web Browser access – log in directly from a web browser on any PC or Mac 1. Visit vlab.utoledo.edu on your browser (Safari, Chrome or Edge) 2. Click the second icon “VMware Horizon HTML Access” 3. Type your UTAD Username and Password, then click “Login” 4. Click the icon “Clinical Live” then wait a couple of seconds as you are logged in Note: USB devices are not available when you log in via web browser.
    [Show full text]
  • Information and Communication Technologies of Teaching Higher Mathematics to Students of Engineering Specialties at Technical Universities
    Terekhova, N., Zubova, E. / Volume 9 - Issue 27: 560-569 / March, 2020 560 DOI: http://dx.doi.org/10.34069/AI/2020.27.03.60 Information and Communication Technologies of Teaching Higher Mathematics To Students of Engineering Specialties At Technical Universities Информационно-Коммуникационные Технологии Обучения Высшей Математике Студентов Инженерных Специальностей Технических Вузов Received: January 25, 2020 Accepted: February 29, 2020 Written by: Natalya Vladimirovna Terekhova213 ORCID : 0000-0003-4570-6261 https://elibrary.ru/author_items.asp?authorid=796649 Elena Aleksandrovna Zubova214 ORCID: 0000-0001-5666-2634 https://elibrary.ru/author_items.asp?authorid=802624 Abstract Аннотация Excessive anthropogenic pressure on land Высшие технические учебные заведения развитых resources in Ukraine leads to a deterioration of стран имеют значительные педагогические their quality, and consequently they lose their достижения и развитую систему подготовки специалистов инженерных направлений на основе potential. Human impact on the change of land системного использования средств ИКТ. В quality can be direct (by involving land lots in глобализированном пространстве высшего use, carrying out economic activities) and образования проблему повышения качества indirect (as a result of such activity, enhancing подготовки специалистов в отечественных вузах the natural degradation of soils). The tendency целесообразно решать посредством творческого of deterioration of the state of land resources использование опыта передовых вузов инженерного requires the subordination of land relations to the профиля. main goal – to ensure comprehensive protection Цель исследования заключается в осуществлении of this major national wealth of Ukraine. анализа процесса развития информационно- коммуникационных технологий (ИКТ) обучения Legal support for the protection of agricultural высшей математике студентов инженерных land is considered as a single complex of специальностей технических вузов.
    [Show full text]
  • A Review on the Comparative Roles of Mathematical Softwares in Fostering Scientific and Mathematical Research
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Covenant University Repository Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 11, Number 6 (2015), pp. 4937-4948 © Research India Publications http://www.ripublication.com A Review On The Comparative Roles Of Mathematical Softwares In Fostering Scientific And Mathematical Research Emetere Moses Eterigho1 and Sanni Eshorame Samuel2 1Physics Department, Covenant University, P.M.B. 1023, Ota, Nigeria 2Chemical Engineering Department, Covenant University, P.M.B. 1023, Ota, Nigeria [email protected] Abstract Mathematical software tools used in science, research and engineering have a developmental trend. Various subdivisions for mathematical software applications are available in the aforementioned areas but the research intent or problem under study, determines the choice of software required for mathematical analyses. Since these software applications have their limitations, the features present in one type are often augmented or complemented by revised versions of the original versions in order to increase their abilities to multi-task. For example, the dynamic mathematics software was designed with integrated advantages of different types of existing mathematics software as an improved version for understanding numerical related problems for advanced mathematical content (advanced simulation). In recent times, science institutions have adopted the use of computer codes in solving mathematics related problems. The treatment of complex numerical analysis with the aid of mathematical software is currently used in all branches of physical, biological and social sciences. However, the programming language for mathematics related software varies with their functionalities. Many invaluable researches have been compromised within the confines of unacceptable but expedient standards because of insufficient understanding of the valuable services the available variety of mathematical software could offer.
    [Show full text]
  • The Piranha Algebraic Manipulator
    THE PIRANHA ALGEBRAIC MANIPULATOR FRANCESCO BISCANI∗ Key words. Celestial Mechanics, algebraic manipulation, computer algebra, Poisson series, multivariate polynomials Abstract. In this paper we present a specialised algebraic manipulation package devoted to Celestial Mechanics. The system, called Piranha, is built on top of a generic and extensible frame- work, which allows to treat eciently and in a unied way the algebraic structures most commonly encountered in Celestial Mechanics (such as multivariate polynomials and Poisson series). In this contribution we explain the architecture of the software, with special focus on the implementation of series arithmetics, show its current capabilities, and present benchmarks indicating that Piranha is competitive, performance-wise, with other specialised manipulators. 1. Introduction. Since the late Fifties ([27]) researchers in the eld of Celestial Mechanics have manifested a steady and constant interest in software systems able to manipulate the long algebraic expressions arising in the application of perturbative methods. Despite the widespread availability of commercial general-purpose algebraic manipulators, researchers have often preferred to develop and employ specialised ad- hoc programs (we recall here, without claims of completeness, [10], [31, 32], [48], [7], [4], [18], [47], [1], [29], [13, 12] and [23]). The reason for this preference lies mainly in the higher performance that can be obtained by these. Specialised manipulators are built to deal only with specic algebraic structures, and thus they can adopt fast algo- rithm and data structures and avoid the overhead inherent in general-purpose systems (which instead are designed to deal with a wide variety of mathematical expressions). The performance gap between specialised and general-purpose manipulators is often measured in orders of magnitude, especially for the most computationally-intensive operations.
    [Show full text]
  • Symbolic Mathematics for Chemists
    Symbolic Mathematics for Chemists Symbolic Mathematics for Chemists A Guide for Maxima Users Fred Senese Frostburg State University MD, USA This edition first published 2019 © 2019 John Wiley & Sons Ltd All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Fred Senese to be identified as the author of this work has been asserted in accordance with law. Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions.
    [Show full text]
  • Basic Concepts and Algorithms of Computer Algebra Stefan Weinzierl
    Basic Concepts and Algorithms of Computer Algebra Stefan Weinzierl Institut fur¨ Physik, Universitat¨ Mainz I. Introduction II. Data Structures III. Efficiency IV. Classical Algorithms Literature Books: D. Knuth, “The Art of Computer Programming”, Addison-Wesley, third edition, 1997 • K. Geddes, S. Czapor and G. Labahn, “Algorithms for Computer Algebra”, Kluwer, • 1992 J. von zur Gathen and J. Gerhard, “Modern Computer Algebra”, Cambridge • University Press, 1999 Lecture notes: S.W., “Computer Algebra in Particle Physics”, hep-ph/0209234. • The need for precision Hunting for the Higgs and other yet-to-be-discovered particles requires accurate and precise predictions from theory. Theoretical predictions are calculated as a power expansion in the coupling. Higher precision is reached by including the next higher term in the perturbative expansion. State of the art: Third or fourth order calculations for a few selected quantities (R-ratio, QCD β- • function, anomalous magnetic moment of the muon). Fully differential NNLO calculations for a few selected 2 2 and 2 3 processes. • ! ! Automated NLO calculations for 2 n (n = 4::6;7) processes. • ! Computer algebra programs are a standard tool ! History The early days, mainly LISP based systems: 1965 MATHLAB 1958 FORTRAN 1967 SCHOONSHIP 1960 LISP 1968 REDUCE 1970 SCRATCHPAD, evolved into AXIOM 1971 MACSYMA 1979 muMATH, evolved into DERIVE Commercialization and migration to C: 1981 SMP, with successor MATHEMATICA 1972 C 1988 MAPLE 1992 MuPAD Specialized systems: 1975 CAYLEY (group theory), with
    [Show full text]
  • Masarykova Univerzita Informační Technologie Pro
    MASARYKOVA UNIVERZITA 5 c FAKULTA INFORMATIKY m INFORMAČNÍ TECHNOLOGIE PRO MODELOVÁNÍ A SIMULACE DIPLOMOVÁ PRÁCA Brno, 2013 Bc. KAMIL DUREC 5 c m PREHLÁSENIE Prehlasujem, že táto práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a literatúru, ktoré som pri vypracovaní použil alebo z nich čerpal, v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj. Bc. Kamil Durec Vedúci práce: prof. RNDr. Jiří Hřebíček, CSc. ZHRNUTIE Cieľom mojej diplomovej práce je prieskum v oblasti súčasného stavu informačných a komunikačných technológií určených na modelovanie a simulácie procesov v praxi. Z prieskumu bude vybraná vhodná ICT, ktorá bude podrobne preskúmaná a popísané jej vlastnosti. Určením vhodného problému, bude predvedený postup jeho riešenia za pomoci vybratej ICT a pomocou počítačovej simulácie analýza vlastností získaného riešenia. KĽÚČOVÉ SLOVÁ simulácia, modelovanie, systém počítačovej algebry, computer algebra system, CAS, Maple, MapleSim, robotická ruka Obsah 1 Úvod ...................................................................................................................................... 5 2 Teória simulácie a modelovania ............................................................................................ 6 2.1. Experiment ......................................................................................................................... 7 2.2. Model ................................................................................................................................
    [Show full text]