Carbon Pumps in the Benguela Current Upwelling System

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Pumps in the Benguela Current Upwelling System CARBON PUMPS IN THE BENGUELA CURRENT UPWELLING SYSTEM Dissertation zur Erlangung des Doktorgrades an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Geowissenschaften der Universität Hamburg vorgelegt von Anita Flohr Hamburg, 2014 Als Dissertation angenommen vom Fachbereich Geowissenschaften der Universität Hamburg auf Grund der Gutachten von Prof. Dr. Kay-Christian Emeis und Dr. Tim Rixen Tag der Disputation: 13.01.2015 The study has been realised from April 2009 to September 2014 at the Leibniz Center for Tropical Marine Ecology in Bremen in the frame of the GENUS programme (Geochemistry and Ecology of the Namibian Upwelling System). This project has been funded by the German Federal Ministry of Education and Research (03F0497D-ZMT) and is an endorsed project of the Integrated Marine Biogeochemistry and Ecosystem Research (IMBER). CONTENT Summary ..................................................................................................................................... 1 Zusammenfassung ...................................................................................................................... 4 1. Scientific background and objectives .................................................................................. 7 1.1. The marine carbon cycle ......................................................................................... 7 1.1.1. Significance in global carbon cycling ................................................................. 7 1.1.2. Chemical basis - The carbonate system of seawater ........................................... 9 1.2. Drivers, strength and efficiency of marine CO2 sequestration ............................. 12 1.3. Relevance of eastern boundary upwelling systems in marine carbon cycling ...... 14 1.3.1. The Benguela Current upwelling system .......................................................... 15 1.4. Objectives and outline........................................................................................... 18 2. Outline of publications ...................................................................................................... 22 3. Chapter I ............................................................................................................................ 25 4. Chapter II .......................................................................................................................... 51 5. Chapter III ......................................................................................................................... 69 6. Chapter IV ......................................................................................................................... 81 7. Synoptic discussion and conclusion .................................................................................. 97 7.1. Aspects of carbon pumping in the Benguela Current upwelling system .............. 97 7.2. Impacts of climate change .................................................................................. 104 8. Perspectives ..................................................................................................................... 106 Figure captions ....................................................................................................................... 108 Table captions ......................................................................................................................... 117 References .............................................................................................................................. 119 List of co-author publications ................................................................................................. 135 Curriculum Vitae .................................................................................................................... 137 Danksagung ............................................................................................................................ 138 Erklärung ................................................................................................................................ 141 ABBREVIATIONS AT see TA BUS Benguela Current upwelling system C carbon CaCO3 calcium carbonate cm centimetre CT see DIC CO2 carbon dioxide d day 13 δ CCT stable isotope ratio of dissolved inorganic carbon DIC, CT dissolved inorganic carbon 15 - δ NNO3 stable isotope ratio of dissolved nitrate DOC dissolved organic carbon EBUS eastern boundary upwelling system ESACW Eastern South Atlantic Central Water fCO2 fugacity of CO2 g gram GENUS Geochemistry and Ecology of the Namibian Upwelling System H2S hydrogen sulphide km² square kilometre l litre m² square meter - - + N fixed nitrogen (NO3 , NO2 , NH4 ) N2 di-nitrogen gas N* deviation of fixed nitrogen with respect to phosphate; based on the Redfield ratio of N/P = 16/1 NatMIRC National Marine Information and Research Centre in Swakopmund NBUS northern Benguela upwelling system + NH4 ammonium - NO3 nitrate - NO2 nitrite O2 oxygen OM organic matter ΩA saturation state of aragonite in seawater ΩC saturation state of calcite in seawater P* deviation of phosphate with respect to N; based on the Redfield ratio of N/P = 16/1 PIC, CCaCO3 particulate inorganic carbon 3- P, PO4 phosphate 0 PO4 preformed phosphate pCO2 partial pressure of CO2 POC, Corg particulate organic carbon SACW South Atlantic Central Water Si(OH)4 silicate SBUS southern Benguela upwelling system TA, AT total alkalinity yr year % percent °C degree Celsius FACTORS 15 P peta 10 T terra 1012 G giga 109 M mega 106 k kilo 103 m milli 10-3 µ micro 10-6 n nano 10-9 SUMMARY SUMMARY The biological carbon (C) pump influences the flux of carbon dioxide (CO2) between the ocean and the atmosphere by carbon assimilation during the photosynthesis of particulate organic carbon (POC) and the precipitation of calcium carbonate particles (PIC). Regions of intense biological carbon pumping are eastern boundary upwelling systems, among which the Benguela upwelling system (BUS) is the most productive but the least studied one. This work is based on data obtained during several research cruises between 2009 and 2011 in the framework of the GENUS project (Geochemistry and Ecology of the Namibian Upwelling System). GENUS is a multi-disciplinary programme that aims to improve our understanding of the complex interaction between biological, biogeochemical and physical processes within the BUS and their response to climate change. The main objective of this thesis is to investigate the functioning of the biological carbon pump in the northern BUS (NBUS), to assess whether the BUS is a net source or sink for carbon and to give basis for evaluating potential responses of the BUS to global change. Dissolved inorganic nutrient and carbonate chemistry data was raised and used to study the spatio-temporal variability of the remineralisation ratios of C, nitrogen (N) and phosphate (P) (C/N/P) with emphasis on the variability of N deficiency, which is a major factor that limits the production of POC. Records of annual particle fluxes along with hydrographical data were obtained by a mooring on the shelf off Walvis Bay. In conjunction with meteorological records, these data were used to investigate the influence of upwelling on the particle fluxes with a focus on the factors that control the export of POC and PIC on the shelf. Furthermore, carbonate chemistry data allow to determine the variability of the carbonate saturation state (Ω) which influences calcification, growth and survival in many marine calcifying organisms. Along with patterns of air-sea CO2 fluxes, these results were used to evaluate the C source-sink function of the BUS. The results show that the release of C, N and P in the course of organic matter decomposition follows the Redfield stoichiometry of C/N/P of 106/16/1 in the oxygenated 1 SUMMARY water column. However, N loss and P input, which occur in sub- and anoxic bottom waters overlying the mud belt of the Namibian shelf, lower the N/P to <16 in upwelling intermediate water. Together, these processes result in an N deficiency (-N*), equivalent to a relative P excess (+P*), which surfaces and extends to the adjacent hemipelagic ocean. Around 300 km offshore, P* ranged between P* ~0.007µmol kg-1 in 2008 and P* ~0.3 µmol kg-1 in 2010/2011. The results suggest that the magnitude of exported P* is not only controlled by the degree of local O2 deficiency on the shelf, but as well by the amount of remotely supplied N* excess (N/P >16, +N*). This +N* is carried along with South Atlantic Central Water (SACW) to the NBUS shelf and varied between N* ~12 µmol kg-1 in 2008 and N* ~3-4 µmol kg-1 in 2009/2011 off Kunene. The findings point to a mechanism which replenishes the N* deficiency on the NBUS shelf and thereby counteracts the N limitation that hampers the N-driven CO2 drawdown of the biological carbon pump in the NBUS. The combined results of hydrographical, meteorological and particle flux data show that even comparatively weak upwelling of high SACW fractions fuels higher POC fluxes (>91 g POC m-2 yr-1) than intense upwelling of Eastern South Atlantic Central Water (ESACW). This reflects the higher nutrient inventory of SACW compared to ESACW, among other factors. The results further indicate that the POC export on the shelf is dominated by diatom productivity. The decomposition of the basically diatomaceous organic matter causes very low Ω (ΩAmin = 0.7, ΩCmin = 1.2) and high silicate concentrations in ascending sub-thermocline waters.
Recommended publications
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • 2007 MTS Overview of Manned Underwater Vehicle Activity
    P A P E R 2007 MTS Overview of Manned Underwater Vehicle Activity AUTHOR ABSTRACT William Kohnen There are approximately 100 active manned submersibles in operation around the world; Chair, MTS Manned Underwater in this overview we refer to all non-military manned underwater vehicles that are used for Vehicles Committee scientific, research, tourism, and commercial diving applications, as well as personal leisure SEAmagine Hydrospace Corporation craft. The Marine Technology Society committee on Manned Underwater Vehicles (MUV) maintains the only comprehensive database of active submersibles operating around the world and endeavors to continually bring together the international community of manned Introduction submersible operators, manufacturers and industry professionals. The database is maintained he year 2007 did not herald a great through contact with manufacturers, operators and owners through the Manned Submersible number of new manned submersible de- program held yearly at the Underwater Intervention conference. Tployments, although the industry has expe- The most comprehensive and detailed overview of this industry is given during the UI rienced significant momentum. Submersi- conference, and this article cannot cover all developments within the allocated space; there- bles continue to find new applications in fore our focus is on a compendium of activity provided from the most dynamic submersible tourism, science and research, commercial builders, operators and research organizations that contribute to the industry and who share and recreational work; the biggest progress their latest information through the MTS committee. This article presents a short overview coming from the least likely source, namely of submersible activity in 2007, including new submersible construction, operation and the leisure markets.
    [Show full text]
  • The Oriental Institute News & Notes No
    oi.uchicago.edu THE ORIENTAL INSTITUTE NEWS & NOTES NO. 165 SPRING 2000 © THE ORIENTAL INSTITUTE OF THE UNIVERSITY OF CHICAGO AS THE SCROLLS ARRIVE IN CHICAGO... NormaN Golb, ludwig rosenberger Professor in Jewish History and Civilization During the past several years, some strange events have befallen the logic as well as rhetoric by which basic scholarly positions the storied Dead Sea Scrolls — events that could hardly have on the question of the scrolls’ nature and origin had been and been foreseen by the public even a decade ago (and how much were continuing to be constructed. During the 1970s and 1980s, the more so by historians, who, of all people, should never at- I had made many fruitless efforts in encouragement of a dialogue tempt to predict the future). Against all odds, the monopoly of this kind, but only in the 1990s, perhaps for reasons we will on the scrolls’ publication, held for over forty years by a small never fully understand, was such discourse finally initiated. And coterie of scholars, was broken in 1991. Beginning with such it had important consequences, leading to significant turning pioneering text publications as those of Ben-Zion Wacholder in points in the search for the truth about the scrolls’ origins. Cincinnati and Michael Wise in Chicago, and continuing with One of the most enlightening of these came in 1996, when the resumption of the Discoveries in the Judaean Desert series England’s Manchester University hosted an international confer- of Oxford University Press, researchers everywhere discovered ence on a single manuscript discovered in Cave III — a role of how rich these remnants of ancient Hebraic literature of intert- simple bookkeeping entries known as the Copper Scroll.
    [Show full text]
  • Characteristics of Intermediate Water Flow in the Benguela Current As
    Deep-Sea Research II 50 (2003) 87–118 Characteristics of intermediate water flow in the Benguela current as measured with RAFOS floats P.L. Richardsona,*, S.L. Garzolib a Department of Physical Oceanography, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, 3 Water Street, P.O. Box 721, USA b Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Received 28 September 2001; accepted 26 July 2002 Abstract Seven floats (not launched in rings) crossed over the mid-Atlantic Ridge in the Benguela extension with a mean westward velocity of around 2 cm=s between 22S and 35S. Two Agulhas rings crossed over the mid-Atlantic Ridge with a mean velocity of 5:7cm=s toward 2851: This implies they translated at around 3:8cm=s through the background velocity field near 750 m: The boundaries of the Benguela Current extension were clearly defined from the observations. At 750 m the Benguela extension was bounded on the south by 35S and the north by an eastward current located between 18S and 21S. Other recent float measurements suggest that this eastward current originates near the Trindade Ridge close to the western boundary and extends across most of the South Atlantic, limiting the Benguela extension from flowing north of around 20S. The westward transport of the Benguela extension was estimated to be 15 Sv by integrating the mean westward velocities from 22S to 35S and multiplying by the 500 m estimated thickness of intermediate water. Roughly 1.5 Sv of this are transported by the B3 Agulhas rings that cross the mid-Atlantic Ridge each year (as observed with altimetry).
    [Show full text]
  • Response to Thum Et Al
    Response to Thum et al. David M. Patrick, … , Eva van Rooij, Eric N. Olson J Clin Invest. 2011;121(2):462-463. https://doi.org/10.1172/JCI46108. Letter Thum et al. conclude that microRNA-21 (miR-21) is essential for cardiac hypertrophy and fibrosis in response to pressure overload (1). They also claim that our failure to observe a blockade to these processes in mice treated with an 8-mer locked nucleic acid–modified oligonucleot​ ide against miR-21 (called Anti-21) (2) is due to the ineffectiveness of such inhibitors. We wish to point out several caveats to their study regarding the role of miR-21 in cardiac hypertrophy and their conclusions regarding the efficacy of the Anti-21 oligonucleotide. First, we find that Anti-21 inhibits miR-21 with a half-maximal inhibitory concentration of 0.9 nM, indicating the efficacy of Anti-21. Second, Thum et al. do not state the method they used to measure miR-21 inhibition, though we assume it to be quantitative PCR (qPCR). In our hands, qPCR alone is unreliable for measuring miRNA inhibition, especially for 8-mer inhibitors, since they may be displaced during qPCR and thereby give an underrepresentation of miRNA inhibition. To demonstrate functional inhibition of a miRNA, it is important to show data from multiple assays, such as small RNA Northern blots, luciferase reporter assays, and target derepression, as shown in our study (2). Such data are lacking in the Thum et al. rebuttal, which makes comparison of the different chemistries impossible. Thum et al. also state that we measured miR-21 inhibition […] Find the latest version: https://jci.me/46108/pdf letters contrast and consistent with the findings Acknowledgments Address correspondence to: Thomas Thum, reported by Patrick et al., application of We kindly acknowledge the support of the Hannover Medical School, Institute for short 8-mer oligonucleotides against miR- Deutsche Forschungsgemeinschaft (DFG Molecular and Translational Therapeutic 21 did not affect pressure overload-induced TH903/10-1), the BMBF (01EO0802 and Strategies, Carl-Neuberg-Str.
    [Show full text]
  • The Global Ocean: a 10-Year Portrait of the Near-Surface Circulation1
    The Global Ocean: A 10-Year Portrait of the Near-Surface Circulation1 nderstanding the dynamics controlling Earth’s cli- satellite altimetry. Parameterization of Ekman stress diver- mate requires a thorough knowledge of the ocean gence to the NCAR/NCEP reanalysis winds was determined Umean state, particularly of mean sea level. Sea level, by fitting the mean pressure gradient, smoothed to 9° in the together with Ekman currents, largely defines the surface cir- zonal and 3° in the meridional direction, to the GRACE-based culation. Horizontal velocities lend stability to Earth’s climate mean sea level released recently by the NASA Jet Propulsion by advecting and mixing the properties of the seawater to Laboratory. compensate for the effects of air-sea fluxes that vary in space The best parameterization reveals remarkable seasonal dif- and time. Although since 1992 advanced satellite altimetry ferences in the relationship between Ekman velocity and local provides continuous and accurate observations of the time- wind and, in summer, it corresponds well to the parameteriza- variable sea level anomaly, determining mean sea level remains tion suggested by Ralph and Niiler in 1999. In winter, the angle a challenge: Spatial variations in mean sea level that maintain between Ekman velocity and wind vectors as well as the ratio the dynamic balances of the ocean do not exceed 3 m, while of their magnitudes decreases markedly. Although this ten- elevation of the equipotential surface (geoid), used as a refer- dency agrees with the expected effect of known greater mixing ence for mean sea level, varies between about –100 to +100 m, due to winter-time convection, traditional models of the mixed owing to the mass distribution within the Earth.
    [Show full text]
  • Capitol Hill, That Is....): My Experiences As a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear
    University of Connecticut OpenCommons@UConn Wrack Lines University of Connecticut Sea Grant July 2004 A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear Follow this and additional works at: https://opencommons.uconn.edu/wracklines Recommended Citation Rear, Laura, "A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow" (2004). Wrack Lines. 10. https://opencommons.uconn.edu/wracklines/10 A Year on the Hill (Capitol Hill, that is....) My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Archaeological Program Assistant, I was fortunate enough to head out to by Laura Rear sea to the site of the RMS Titanic in June 2003 with several marine When I was accepted as a Knauss Sea Auster, Science Director for the archaeologists. The Titanic remains were Grant Marine Policy Fellow in June Connecticut National Undersea Research first found by Dr. Robert Ballard in 2002, I was exhilarated. I was going to Center (NURC), who would head out to 1985, using towed side scan sonar and get the chance to spend a year of my sea with me later in the year to explore cameras. In 1986 Ballard returned to the career working for the federal govern- seamounts in the mid-Atlantic. That con- site with Alvin to document the state of ment in Washington, DC. It was not until ference was the first of many that I the wrecked ocean liner. As per the five months later in November that I would attend on behalf of Ocean Guidelines for Research, Exploration and would come to DC for a week to inter- Exploration.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]
  • Water Masses and Baroclinic Transports in the South Atlantic And
    Journalof MarineResearch, 60, 639–676,2002 Journal of MARINE RESEARCH Volume60, Number 5 Water masses andbaroclinic transports inthe South Atlanticand Southern oceans byKaren J. Heywood 1 andBrian A. King 2 ABSTRACT Wedescribe the World Ocean Circulation Experiment (WOCE) A23hydrographic section from Antarcticato Brazil,nominally along 35W. The section crossed the center of theWeddell Gyre, the AntarcticCircumpolar Current (ACC) andthe Subtropical Gyre in theArgentine Basin. We precisely dene the locations of fronts, the changes in water mass properties across them, and their transports. TheAntarctic Slope Front was crossed above the continental slope of Antarctica,with a baroclinic transportof 4Sv,part of thecyclonic Weddell Gyre circulation of 19 Sv. We repeated a sectionin the WeddellSea occupied in 1973,and saw amarkedwarming of theinowing Warm Deep Water layer bysome0.2° C, butno discernible change in theout owing northern limb of thegyre. An in ow of recentlyventilated water with the same characteristics as Weddell Sea Deep Water (WSDW) was observed owinginto the Weddell Sea from the east. TheWeddell Front was crossed at 61° 7 9Sandthe Southern Boundary (SB) ofthe ACC (often referredto as the Scotia Front) at 58° 38 9S.Betweenthese lay the Weddell-Scotia Con uence, contributing16 Svof eastwardtransport. The rstcrossing of theSouthern ACC Front(SACCF) lay southof SouthGeorgia at ;55°309S.Itthenwrapped anticyclonically around South Georgia and was encounteredat 53° 40 9Sbeforeretro ecting and returning eastward at ;53°309S. Thebaroclinic transportwas ;15Sv at each crossing. In this region the SACCF ismost clearly identi ed by a decreasein thesalinity of thetemperature minimum layer. The core of thePolar Front (PF) layat ;49Swhere the isotherms plunged down sharply to the north, and transported 67 Sv.
    [Show full text]
  • The Development of Autonomous Underwater Vehicles (AUV); a Brief Summary
    The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary D. Richard Blidberg, (blidberg@ausi,org) Autonomous Undersea Systems Institute, Lee New Hampshire, USA Introduction The concept of a submersible vehicle is not a new idea. The first American submarine was called “Turtle.” It was built at Saybrook, Connecticut in 1775 by David Bushnell and his brother, Ezra. The Turtle was a little egg-shaped wooden submarine held together by iron straps. Turtle bobbed like a cork in rough surface winds and seas even though she was lead weighted at the bottom. In this hand and foot-operated contraption, one person could descend by operating a valve to admit water into the ballast tank and ascend with the use of pumps to eject the water. Two flap-type air vents at the top opened when the hatch was clear of water and closed when it was as not. The air supply lasted only 30 minutes. The Turtle's first engagement, which took place in New York Harbor in 1776, was also the first naval battle in history involving a submarine. [Pararas] In November of 1879, the Reverend George W. Garrett designed, what was considered by some to be the world's first practical powered submarine, the “Resurgam.” It was built at the Brittannia Engine Works and Foundry of J. B. Cochran in Birkenhead, England and was powered by a Lamm 'fireless' steam engine, and could travel for some ten hours on power stored in an insulated tank. After these historic underwater vehicles, there have been many more submersibles developed and used operationally for a number of different tasks.
    [Show full text]
  • Upper-Level Circulation in the South Atlantic Ocean
    Prog. Oceanog. Vol. 26, pp. 1-73, 1991. 0079 - 6611/91 $0.00 + .50 Printed in Great Britain. All fights reserved. © 1991 Pergamon Press pie Upper-level circulation in the South Atlantic Ocean RAY G. P~-rwtSON and LOTHAR Sa~AMMA lnstitut fiir Meereskunde an der Universitiit Kiel, Diisternbrooker Weg 20, 2300 Kiel 1, F.R.G. Abstract - In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional beat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability and interannual warmings at low latitudes, the Brazil Current, the South Atlantic Cmrent, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends the survey. CONTENTS 1. Introduction 2 2. Climatic Elements 2 3. Subtropical and Equatorial Circulation 11 3.1. Agulhas Current Retroflection 11 3.2. Benguela Cmrent 16 3.3. Equatorial Cttrrents 18 3.3.1. Components of the system 18 3.3.2. Angola Basin circulation 26 3.3.3.
    [Show full text]
  • Effects of Tourism on Herbivore Community Composition in Coral Reefs in the Gulf of Thailand Diplomarbeit
    Effects of Tourism on herbivore community composition in Coral Reefs in the Gulf of Thailand Diplomarbeit vorgelegt von Susanne Pusch Erstgutachter: Prof. Dr. Wilfried Gabriel Zweitgutachter: Prof. Dr. Christian Wild Fakultät für Biologie, Department Biologie II Ludwig-Maximilians-Universität München München, den 16.09.2011 Für meinen Vater, meine Mutter und Lukas 1 Erklärung Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ort, Datum:____________________ Unterschrift:____________________ Kontaktdaten der Betreuer: Prof. Dr. Wilfried Gabriel Ludwig-Maximilians-Universität München / Institute of Ecology / Großhaderner Str. 2 / D-82152 Munich / Email: [email protected] Prof. Dr. Christian Wild Universität Bremen / Leibniz Center for Tropical Marine Ecology / Fahrenheitstr.6 / D-28359 Bremen / Email: [email protected] 2 Danksagung Zunächst möchte ich mich bei Prof. Dr. Christian Wild bedanken, ohne den diese für mich sehr interessante Diplomarbeit nicht zustande gekommen wäre. Vor allem die anfängliche Betreuung bei der Datenaufnahme in Thailand hat mir bei der Erstellung meiner Arbeit sehr geholfen. Auch für die spontane Hilfe von Dr. Anna Fricke, sowie für die Hilfe der Mitarbeiter im Labor des ZMT Bremen möchte ich mich herzlich bedanken. Eine große Hilfe war für mich die Zusammenarbeit mit Hauke Schwieder, Swaantje Bennecke und Kristina Börder bei der Datenaufnahme in Thailand. Durch das freundschaftliche Verhältnis und ihre Hilfsbereitschaft wurde die Arbeit sehr erleichtert, und auch unvorhergesehene Probleme konnten wir gemeinsam bewältigen. Auch durch diese besondere Zusammenarbeit wurde der Aufenthalt für mich zu einem unvergesslichen Erlebnis, wofür ich mich herzlich bedanken will. Mein besonderer Dank gilt Hauke, der nicht nur in Thailand, sondern auch bei der weiteren Arbeit in Bremen eine große Hilfe war.
    [Show full text]