Characteristics of Intermediate Water Flow in the Benguela Current As

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Intermediate Water Flow in the Benguela Current As Deep-Sea Research II 50 (2003) 87–118 Characteristics of intermediate water flow in the Benguela current as measured with RAFOS floats P.L. Richardsona,*, S.L. Garzolib a Department of Physical Oceanography, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, 3 Water Street, P.O. Box 721, USA b Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Received 28 September 2001; accepted 26 July 2002 Abstract Seven floats (not launched in rings) crossed over the mid-Atlantic Ridge in the Benguela extension with a mean westward velocity of around 2 cm=s between 22S and 35S. Two Agulhas rings crossed over the mid-Atlantic Ridge with a mean velocity of 5:7cm=s toward 2851: This implies they translated at around 3:8cm=s through the background velocity field near 750 m: The boundaries of the Benguela Current extension were clearly defined from the observations. At 750 m the Benguela extension was bounded on the south by 35S and the north by an eastward current located between 18S and 21S. Other recent float measurements suggest that this eastward current originates near the Trindade Ridge close to the western boundary and extends across most of the South Atlantic, limiting the Benguela extension from flowing north of around 20S. The westward transport of the Benguela extension was estimated to be 15 Sv by integrating the mean westward velocities from 22S to 35S and multiplying by the 500 m estimated thickness of intermediate water. Roughly 1.5 Sv of this are transported by the B3 Agulhas rings that cross the mid-Atlantic Ridge each year (as observed with altimetry). This value of the Benguela extension transport is the first one to have been obtained from long-term (two-year) observations and across the full width of the Benguela extension. r 2002 Elsevier Science Ltd. All rights reserved. 1. Introduction equator to the northern North Atlantic where the water is cooled and transformed into deep water A quantitative knowledge of Antarctic Inter- which returns to the South Atlantic (Schmitz, mediate Water (AAIW) circulation patterns and 1996; Gordon et al., 1992; Sloyan and Rintoul, the associated heat and salt transport is important 2001). The low-salinity AAIW layer is one of the to climate studies because AAIW is a key part of most prominent features of the Atlantic and can be the Atlantic meridional overturning circulation clearly traced from the South Atlantic across the (MOC). Thermocline and intermediate water from equator and into the northern North Atlantic. the South Atlantic flows northward across the The upper limb of the Atlantic MOC originates in the southeastern Atlantic where South Atlantic *Corresponding author. Tel.: +508-289-2546; fax: +508- Current water merges with Indian Ocean leakage 457-2163. in the Benguela Current (Reid, 1989; Peterson and E-mail address: [email protected] (P.L. Richardson). Stramma, 1991; Stramma and England, 1999; de 0967-0645/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved. PII: S 0967-0645(02)00380-6 88 P.L. Richardson, S.L. Garzoli / Deep-Sea Research II 50 (2003) 87–118 Ruijter et al., 1999). The Benguela Current flows (Gordon et al., 1992). Estimates of the amount northward as the eastern part of the subtropical of intermediate water entering the Benguela gyre of the South Atlantic (Fig. 1). Accurate Current from the Agulhas range from near zero knowledge of the circulation and amounts of (Rintoul, 1991) to around 50% (Gordon et al., source water in the Benguela Current has re- 1992). Knowledge of the relative amounts and mained lacking because of the complexities of the subsequent pathways is important because Agul- ocean circulation and the lack of suitable has leakage water is warmer and saltier than South direct measurements especially in the intermediate Atlantic Current Water of Drake Passage origin water, which contributes about half of the and could lead to a greater northward heat and transport of the upper limb of the MOC salt flux. NICC NSEC EIC Eq. SICC ESEC SEUC 5S CSEC SECC 10S SSEC 15S 20S 25S 30S Benguela Current 35S AC Brazil Current South Atlantic Current 40S FC 45S Antarctic Circumpolar Current 50S 70W 60W 50W 40W 30W 20W 10W 0 10E 20E Fig. 1. Schematic circulation at the level of Antarctic Intermediate Water (500–1200 m) by Stramma and England (1999). The Agulhas Current (AC) sheds current rings near 40S 18E that translate northwestward in the Benguela Current and its extension. The outlined box (15S–40S, 20E–32W) shows the area of the Benguela Current float experiment and trajectories. Note that the main pathway of intermediate water to the North Atlantic is first northward in the Benguela Current, then westward in its extension, and finally northward along the western boundary north of 25S. Near the equator some intermediate water is entrained into zonal currents as described by Stramma and England (1999). P.L. Richardson, S.L. Garzoli / Deep-Sea Research II 50 (2003) 87–118 89 AAIW enters the subtropical gyre of the South the subtropical gyre) flows northward in the MOC Atlantic near its southwestern corner in the Brazil– along the western boundary and two-thirds flows Falkland confluence zone and also along the southward in the Brazil Current (Boebel et al., southern edge of the South Atlantic Current 1999b; see also Schmid et al., 2000). (McCartney, 1977; Tsuchiya et al., 1994; Boebel Agulhas Current leakage is dominated by et al., 1999a). Some South Atlantic Current water extremely energetic eddies. Ship and satellite data enters the Benguela Current and some merges with have revealed the presence of numerous large the Agulhas Return Current and continues east- (300–400 km diameter) rings of the Agulhas ward past Africa. Part of this eastward flow loops Current embedded in the Benguela Current. The into the subtropical gyre of the Indian Ocean and, rings form as the western part of the Agulhas via Agulhas Current leakage, feeds into the retroflection pinches off from the main current Benguela Current and the South Atlantic sub- (Lutjeharms and Van Ballegooyen, 1988). Ap- tropical gyre. Because the subtropical gyres of the proximately 5–6 rings form per year (Goni et al., South Atlantic and Indian Ocean are partially 1997; Schouten et al., 2000). Olson and Evans connected, it is problematic to use water properties (1986) found that Agulhas rings are among the to clearly identify sources of the Benguela Current most energetic eddies in the world. The Agulhas and to trace the source waters downstream. ring shedding area has the highest levels of eddy Gordon et al. (1992) estimate that approxi- kinetic energy in the southern hemisphere, with mately 65% of the Benguela Current thermocline values reaching 1000–4000 cm2=s2 (Johnson, 1989; and as much as 50% of the Intermediate Water is Patterson, 1985; Ducet et al., 2000). derived from the Indian Ocean. In their scheme, Intermediate water of Indian Ocean origin is the main supply of upper layer water flowing north quickly dissociated from the rings in the Cape across the equator is drawn from AAIW; the lower Basin west of Cape Town, and this water is thermocline and intermediate water passes to blended with water from the South Atlantic lower latitudes of the South Atlantic where Current and also from the tropical Atlantic significant amounts of intermediate water is (McDonagh et al., 1999). This rapid mixing in transferred into the thermocline which could the Cape Basin has made it difficult to determine account for the amount of South Atlantic thermo- accurately the amount of Indian Ocean intermedi- cline water passing northward through the Straits ate water that enters the Benguela Current in rings of Florida as determined by Schmitz and Richard- because source characteristics are rapidly obscured son (1991). In a recent study, Sloyan and Rintoul in the Cape Basin. (2001) concluded that the Atlantic MOC is closed Difficulties in estimating the circulation of by cold, fresh intermediate water that is modified intermediate water in the Benguela Current are to warm, salty varieties by air sea fluxes and the low mean velocities at that level compared to interior mixing in the Atlantic and southwestern the ring velocities and the weak shear in mean Indian Ocean. They suggest that the lower velocity profiles of geostrophic velocity (Garzoli thermocline and intermediate water ðTo101CÞ in and Gordon, 1996). Although there is significant the Benguela Current comes from the South shear in Agulhas rings, there is little shear in the Atlantic Current and Agulhas Current in equal region they are embedded. The small shear and amounts. Unresolved issues are the relative paucity of direct velocity measurements to provide amounts (at different depths) of Indian Ocean a reference for geostrophic velocity has limited our water and South Atlantic water that flow north- knowledge of the subsurface circulation patterns ward in the MOC as opposed to being recycled in the Benguela Current. One notable set of direct around the western side of the Atlantic subtropical current measurements comes from the BEST gyre back into the South Atlantic Current. A (Benguela Sources and Transport) program recent study using floats suggests that around a moored current meter array coupled with inverted third of the intermediate water in the western echo sounders along 30S (Garzoli et al., 1996; Benguela extension (the westward return flow of Pillsbury et al., 1994). These measurements 90 P.L. Richardson, S.L. Garzoli / Deep-Sea Research II 50 (2003) 87–118 spanned the whole Benguela Current in the Cape The Benguela Current Experiment is one of Basin from the coast of Africa out to the Walvis three components of KAPEX (Cape of Good Ridge near 3E (but they missed possible flow Hope Experiments) which is the focus of a series of associated with rings and the portion of the papers in this issue of Deep-Sea Research II.
Recommended publications
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Ebb and Flow Tides and Life on Our Once and Future Planet
    This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is machine, of this reposting, means or collective or other redistirbution BOOK REVIEWS Ebb and Flow Oceanography Tides and Life on Our Once and Future Planet , V By Tom Koppel, The Dundurn Group, which is the loss of much of the fleet of olume 21, Number 2, a quarterly journal of journal The olume 21, Number 2, a quarterly 2007, 296 pages, ISBN 9781550027266, Alexander the Great due to a tidal bore), Paperback, $26.99 US coastal ecosystems, modern analysis, and extracting energy from tides. Chapter 1 REVIEWED BY JOHN L. LuiCK contains an account of the ancient tidal dockyards at Lothal, India—surely a can- Ebb and Flow: Tides and Life on Our didate for “Engineering Wonders of the Once and Future Planet is well titled. It Ancient World.” The most ambitious and O tells the story of tides, why they matter, original chapter is the final one, whose ceanography Society. Society. ceanography what causes them, and how they have three subheadings are Sea Level Change changed over time. The author, Tom Causes Intertidal Zones to Migrate; Giant all sorts of ammonia and phosphoric Koppel, is not an analyst or theoretician Ancient Tides and Earth’s Rotation; and salts.” Again, tides are shown to play a C of tides but a man of inquisitive mind The Origin, Evolution, and Future of Life crucial role in both the origin and the opyright 2008 by The 2008 by opyright and substantial beachcombing and on Earth.
    [Show full text]
  • The Evolution and Demise of North Brazil Current Rings*
    VOLUME 36 JOURNAL OF PHYSICAL OCEANOGRAPHY JULY 2006 The Evolution and Demise of North Brazil Current Rings* DAVID M. FRATANTONI Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts PHILIP L. RICHARDSON Department of Physical Oceanography, Woods Hole Oceeanographic Institution, and Associated Scientists at Woods Hole, Woods Hole, Massachusetts (Manuscript received 27 May 2004, in final form 26 October 2005) ABSTRACT Subsurface float and surface drifter observations illustrate the structure, evolution, and eventual demise of 10 North Brazil Current (NBC) rings as they approached and collided with the Lesser Antilles in the western tropical Atlantic Ocean. Upon encountering the shoaling topography east of the Lesser Antilles, most of the rings were deflected abruptly northward and several were observed to completely engulf the island of Barbados. The near-surface and subthermocline layers of two rings were observed to cleave or separate upon encountering shoaling bathymetry between Tobago and Barbados, with the resulting por- tions each retaining an independent and coherent ringlike vortical circulation. Surface drifters and shallow (250 m) subsurface floats that looped within NBC rings were more likely to enter the Caribbean through the passages of the Lesser Antilles than were deeper (500 or 900 m) floats, indicating that the regional bathymetry preferentially inhibits transport of intermediate-depth ring components. No evidence was found for the wholesale passage of rings through the island chain. 1. Introduction ration from the NBC, anticyclonic rings with azimuthal speeds approaching 100 cm sϪ1 move northwestward a. Background toward the Caribbean Sea on a course parallel to the The North Brazil Current (NBC) is an intense west- South American coastline (Johns et al.
    [Show full text]
  • Lagrangian Measurement of Subsurface Poleward Flow Between 38 Degrees N and 43 Degrees N Along the West Coast of the United States During Summer, 1993
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1996-09-01 Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993 Collins, Curtis A. Geophysical Research Letters, Vol. 23, No. 18, pp. 2461-2464, September 1, 1996 http://hdl.handle.net/10945/45730 GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 18, PAGES 2461-2464, SEPTEMBER 1, 1996 Lagrangian Measurement of subsurface poleward Flow between 38øN and 43øN along the West Coast of the United States during Summer, 1993 CurtisA. Collins,Newell Garfield, Robert G. Paquette,and Everett Carter 1 Departmentof Oceanography,Naval Postgraduate School, Monterey, California Abstract. SubsurfaceLagrangian measurementsat about Undercurrentalong the coastsof California and Oregon. We 140 m showedthat the pathof the CaliforniaUndercurrent lay are using quasi-isobaric(float depth controlled primarily by next to the continentalslope betweenSan Francisco(37.80N) the pressureeffect on density)RAFOS floats (Rossby et al., and St. GeorgeReef (41.8øN) duringmid-summer 1993. The 1986) to make these measurements. A RAFOS float consists meanspeed along this 500 km pathwas 8 cms-1. Theflow at of a hydrophonemounted in a glasstube that is about2 meters this depth was not disturbedby upwelling centersat Point long. These hydrophonesreceive signals from three sound Reyesor CapeMendocino. Restfits also demonstratethe abil- sources that were moored 400 km offshore between 34.3øN and ity to acousticallytrack floats located well above the sound 40.4øN.The sound sources emit 15 W, 80 s signalsa•t 260 Hz channelaxis along the California coast.
    [Show full text]
  • Particle Pathways in the Gulf Stream
    Particle Pathways and P-T Shaw2 in the Gulf Stream Abstract East of Cape Hatteras, the Gulf Stream front separates two water masses: Sargasso Sea water to the south and the An experiment is under way to study the kinematics, dynamics, and cold slope waters to its north. The sharpness of the water mass path evolution of the Gulf Stream front between Cape Hatteras and boundary along the current's cyclonic edge and its coincidence 60°W. The Rafos float, which can track the true motion of water with the stream suggests that the front is impermeable to parcels along density surfaces which slope steeply across the Gulf Stream, has recently been developed for this study. These instruments cross-stream exchange of water. (It should be noted that this are launched in the center of the Gulf Stream every 5-15 days for a distinction of separate water masses loses validity below the 30-day mission. Each float provides a trajectory and a continuous midthermocline, where increasing uniformity of water prop- record of temperature and pressure along the trajectory. Our results erties suggests greater cross-stream exchange.) The Gulf so far show that: a) cross-stream motion has a significant vertical -1 Stream is not so isolated from the Sargasso Sea, however. Be- component (ranging to some 0.1 cm • s ) compared to vertical veloc- ities in midocean; b) floats systematically shoal (upwell) as they ap- tween the Florida Straits and Cape Hatteras the transport of proach anticyclonic meanders and deepen (downwell) as they ap- water more than doubles, with nearly all the new water coming proach cyclonic meanders; c) more than half of the floats launched from the Sargasso Sea.
    [Show full text]
  • Physiological Response to Short-Term Starvation in an Abundant Krill
    Physiological response to short-term starvation in an abundant krill species of the Northern Benguela Current, Euphausia hanseni Lara Kim Hünerlage, Isabella Kandjii (MME, Namibia),Thorsten Werner and Friedrich Buchholz Alfred-Wegener-Institut für Polar- und Meeresforschung AWI, Bremerhaven, Germany Introduction Krill occupy a central role in oceanic food webs as consumers as well as producers. They are a major source of nutrition to fish, birds, seals, and whales. A change in a krill population may thus have dramatic impacts on ecosystems. Within the zooplankton community, Euphausia hanseni belongs to one of the most abundant krill species of the Northern Benguela Current (Olivar and Barange 1990; Map 1: Hydrographic situation off the coast of Namibia at 20 m depth. Image is based on CTD data and was created by Barange et al. 1991). GENUS-subproject “Physical Oceanography” (Mohrholz et al. 2011). The aim of this study was to investigate specific adaptations within the life strategy of E. hanseni. The Experimental Design animals rely on upwelling pulses that lead to rich plankton patches as a food source. The Benguela Current system is a nutritionally poly-pulsed and stratified environment. During late austral summer, the region is typically characterized by minimum upwelling A (Hagen et al. 2001) which goes along with short periods of food deprivation. The following questions shall be answered: How does E. hanseni metabolically adjust during a period of starvation, i.e. between upwelling pulses? C B Map 2: Stations sampled in austral summer 30.01- 7.08.2011 during Are there metabolic differences in krill influenced A) Maintenance of krill during starvation experiment (n=48) research cruise of Maria S.
    [Show full text]
  • St Helena Bay
    The variability of retention in St Helena Bay Anathi Manyakanyaka MNYANA002 Supervisors: Dr Jenifer Jackson-Veitch (SAEON) and A/Prof Mathieu Rouault (UCT) A minor dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Applied Ocean Sciences of the University of Cape Town University of Cape Town Department of Oceanography Faculty of Science Submitted February 2020 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is one’s own. I have used the Harvard Style referencing convention for citation and referencing. Each contribution to, and quotation in, this thesis from the work(s) of other people has been attributed and has been cited and referenced. This thesis is my own work. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. Signature ______________________________ Date 06 February 2020 _________________ 1 | Page Abstract The circulation in St Helena Bay and the variability of the retention of the Bay are investigated using seasonal climatologies of the Regional Ocean Modelling System (ROMS). While retention has been studied biologically, the seasonality of the hydrodynamics contributing to the retention have received less attention.
    [Show full text]
  • The Global Ocean: a 10-Year Portrait of the Near-Surface Circulation1
    The Global Ocean: A 10-Year Portrait of the Near-Surface Circulation1 nderstanding the dynamics controlling Earth’s cli- satellite altimetry. Parameterization of Ekman stress diver- mate requires a thorough knowledge of the ocean gence to the NCAR/NCEP reanalysis winds was determined Umean state, particularly of mean sea level. Sea level, by fitting the mean pressure gradient, smoothed to 9° in the together with Ekman currents, largely defines the surface cir- zonal and 3° in the meridional direction, to the GRACE-based culation. Horizontal velocities lend stability to Earth’s climate mean sea level released recently by the NASA Jet Propulsion by advecting and mixing the properties of the seawater to Laboratory. compensate for the effects of air-sea fluxes that vary in space The best parameterization reveals remarkable seasonal dif- and time. Although since 1992 advanced satellite altimetry ferences in the relationship between Ekman velocity and local provides continuous and accurate observations of the time- wind and, in summer, it corresponds well to the parameteriza- variable sea level anomaly, determining mean sea level remains tion suggested by Ralph and Niiler in 1999. In winter, the angle a challenge: Spatial variations in mean sea level that maintain between Ekman velocity and wind vectors as well as the ratio the dynamic balances of the ocean do not exceed 3 m, while of their magnitudes decreases markedly. Although this ten- elevation of the equipotential surface (geoid), used as a refer- dency agrees with the expected effect of known greater mixing ence for mean sea level, varies between about –100 to +100 m, due to winter-time convection, traditional models of the mixed owing to the mass distribution within the Earth.
    [Show full text]
  • Lecture 4: OCEANS (Outline)
    LectureLecture 44 :: OCEANSOCEANS (Outline)(Outline) Basic Structures and Dynamics Ekman transport Geostrophic currents Surface Ocean Circulation Subtropicl gyre Boundary current Deep Ocean Circulation Thermohaline conveyor belt ESS200A Prof. Jin -Yi Yu BasicBasic OceanOcean StructuresStructures Warm up by sunlight! Upper Ocean (~100 m) Shallow, warm upper layer where light is abundant and where most marine life can be found. Deep Ocean Cold, dark, deep ocean where plenty supplies of nutrients and carbon exist. ESS200A No sunlight! Prof. Jin -Yi Yu BasicBasic OceanOcean CurrentCurrent SystemsSystems Upper Ocean surface circulation Deep Ocean deep ocean circulation ESS200A (from “Is The Temperature Rising?”) Prof. Jin -Yi Yu TheThe StateState ofof OceansOceans Temperature warm on the upper ocean, cold in the deeper ocean. Salinity variations determined by evaporation, precipitation, sea-ice formation and melt, and river runoff. Density small in the upper ocean, large in the deeper ocean. ESS200A Prof. Jin -Yi Yu PotentialPotential TemperatureTemperature Potential temperature is very close to temperature in the ocean. The average temperature of the world ocean is about 3.6°C. ESS200A (from Global Physical Climatology ) Prof. Jin -Yi Yu SalinitySalinity E < P Sea-ice formation and melting E > P Salinity is the mass of dissolved salts in a kilogram of seawater. Unit: ‰ (part per thousand; per mil). The average salinity of the world ocean is 34.7‰. Four major factors that affect salinity: evaporation, precipitation, inflow of river water, and sea-ice formation and melting. (from Global Physical Climatology ) ESS200A Prof. Jin -Yi Yu Low density due to absorption of solar energy near the surface. DensityDensity Seawater is almost incompressible, so the density of seawater is always very close to 1000 kg/m 3.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]
  • Water Masses and Baroclinic Transports in the South Atlantic And
    Journalof MarineResearch, 60, 639–676,2002 Journal of MARINE RESEARCH Volume60, Number 5 Water masses andbaroclinic transports inthe South Atlanticand Southern oceans byKaren J. Heywood 1 andBrian A. King 2 ABSTRACT Wedescribe the World Ocean Circulation Experiment (WOCE) A23hydrographic section from Antarcticato Brazil,nominally along 35W. The section crossed the center of theWeddell Gyre, the AntarcticCircumpolar Current (ACC) andthe Subtropical Gyre in theArgentine Basin. We precisely dene the locations of fronts, the changes in water mass properties across them, and their transports. TheAntarctic Slope Front was crossed above the continental slope of Antarctica,with a baroclinic transportof 4Sv,part of thecyclonic Weddell Gyre circulation of 19 Sv. We repeated a sectionin the WeddellSea occupied in 1973,and saw amarkedwarming of theinowing Warm Deep Water layer bysome0.2° C, butno discernible change in theout owing northern limb of thegyre. An in ow of recentlyventilated water with the same characteristics as Weddell Sea Deep Water (WSDW) was observed owinginto the Weddell Sea from the east. TheWeddell Front was crossed at 61° 7 9Sandthe Southern Boundary (SB) ofthe ACC (often referredto as the Scotia Front) at 58° 38 9S.Betweenthese lay the Weddell-Scotia Con uence, contributing16 Svof eastwardtransport. The rstcrossing of theSouthern ACC Front(SACCF) lay southof SouthGeorgia at ;55°309S.Itthenwrapped anticyclonically around South Georgia and was encounteredat 53° 40 9Sbeforeretro ecting and returning eastward at ;53°309S. Thebaroclinic transportwas ;15Sv at each crossing. In this region the SACCF ismost clearly identi ed by a decreasein thesalinity of thetemperature minimum layer. The core of thePolar Front (PF) layat ;49Swhere the isotherms plunged down sharply to the north, and transported 67 Sv.
    [Show full text]
  • Atlantic Ocean Equatorial Currents
    188 ATLANTIC OCEAN EQUATORIAL CURRENTS ATLANTIC OCEAN EQUATORIAL CURRENTS S. G. Philander, Princeton University, Princeton, Centered on the equator, and below the westward NJ, USA surface Sow, is an intense eastward jet known as the Equatorial Undercurrent which amounts to a Copyright ^ 2001 Academic Press narrow ribbon that precisely marks the location of doi:10.1006/rwos.2001.0361 the equator. The undercurrent attains speeds on the order of 1 m s\1 has a half-width of approximately Introduction 100 km; its core, in the thermocline, is at a depth of approximately 100 m in the west, and shoals to- The circulations of the tropical Atlantic and PaciRc wards the east. The current exists because the west- Oceans have much in common because similar trade ward trade winds, in addition to driving divergent winds, with similar seasonal Suctuations, prevail westward surface Sow (upwelling is most intense at over both oceans. The salient features of these circu- the equator), also maintain an eastward pressure lations are alternating bands of eastward- and west- force by piling up the warm surface waters in the ward-Sowing currents in the surface layers (see western side of the ocean basin. That pressure force Figure 1). Fluctuations of the currents in the two is associated with equatorward Sow in the thermo- oceans have similarities not only on seasonal but cline because of the Coriolis force. At the equator, even on interannual timescales; the Atlantic has where the Coriolis force vanishes, the pressure force a phenomenon that is the counterpart of El Ninoin is the source of momentum for the eastward Equa- the PaciRc.
    [Show full text]