Benjamin Libet 414
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
Time to Lay the Libet Experiment to Rest: Commentary on Papanicolaou (2017)
Psychology of Consciousness: Theory, Research, and Practice © 2017 American Psychological Association 2017, Vol. 4, No. 3, 324–329 2326-5523/17/$12.00 http://dx.doi.org/10.1037/cns0000124 COMMENTARY Time to Lay the Libet Experiment to Rest: Commentary on Papanicolaou (2017) John F. Kihlstrom University of California, Berkeley For more than 30 years, “the Libet experiment” has inspired and dominated philosoph- ical and scientific discussions of free will and determinism. Unfortunately, this famous experiment has been compromised by a serious confounding variable (i.e., there has been no control for watching the clock), and the method of data collection ignored conscious mental activity that occurred prior to the decision to act. Because Libet’s results appear to be wholly an artifact of his method, his experiment should be discounted in future discussions of the problem of free will. Keywords: agency, consciousness, free will, Libet experiment, readiness potential For more than 30 years, an experiment by In his experiment, Libet and his colleagues Benjamin Libet, a psychophysiologist interested asked subjects to perform a simple spontaneous in psychoanalytic theory, has inspired and dom- motor activity, flicking a finger or flexing a inated discussions of free will and conscious wrist, while watching a fast-moving clock, and agency. Starting with Libet, Wright, and Glea- to note the time at which they decided to make son (1982), Libet capitalized on an electroen- the movement (Libet, 1985; Libet, Gleason, cephalographic (EEG) signature known as the Wright, & Pearl, 1983; Libet et al., 1982). Ex- readiness potential (RP, or Bereitschaftspoten- amining the EEG data, they observed that the tial in the original German; Kornhuber & RP began approximately 350 ms before subjects Deecke, 1965, 1990), a negative shift in voltage decided to make the movement—which, in turn, which occurs prior to voluntary muscle move- occurred about 200 ms before the movement ments—somewhat in the manner of an event- began. -
The Birth of Information in the Brain: Edgar Adrian and the Vacuum Tube,” Science in Context 28: 31-52
Garson, J. (2015) “The Birth of Information in the Brain: Edgar Adrian and the Vacuum Tube,” Science in Context 28: 31-52. Preprint (not copyedited or formatted) Please use DOI when citing or quoting: https://doi- org.proxy.wexler.hunter.cuny.edu/10.1017/S0269889714000313 The Birth of Information in the Brain: Edgar Adrian and the Vacuum Tube Word Count: 10, 418 Abstract: As historian Henning Schmidgen notes, the scientific study of the nervous system would have been ‘unthinkable’ without the industrialization of communication in the 1830s. Historians have investigated extensively the way nerve physiologists have borrowed concepts and tools from the field of communications, particularly regarding the nineteenth-century work of figures like Helmholtz and in the American Cold War Era. The following focuses specifically on the interwar research of the Cambridge physiologist Edgar Douglas Adrian, and on the technology that led to his Nobel-Prize- winning research, the thermionic vacuum tube. Many countries used the vacuum tube during the war for the purpose of amplifying and intercepting coded messages. These events provided a context for Adrian’s evolving understanding of the nerve fiber in the 1920s. In particular, they provide the background for Adrian’s transition around 1926 to describing the nerve impulse in terms of “information,” “messages,” “signals,” or even “codes,” and for translating the basic principles of the nerve, such as the all-or-none principle and adaptation, into such an “informational” context. The following also places Adrian’s research in the broader context of the changing relationship between science and technology, and between physics and physiology, in the first few decades of the twentieth century. -
Tilburg University Christian Faith, Free Will and Neuroscience Sarot, M
Tilburg University Christian Faith, Free Will and Neuroscience Sarot, M. Published in: Embodied Religion Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link to publication in Tilburg University Research Portal Citation for published version (APA): Sarot, M. (2013). Christian Faith, Free Will and Neuroscience. In P. H. A. I. Jonkers, & M. Sarot (Eds.), Embodied Religion (pp. 105-120). (Ars Disputandi Supplement Series; No. 6). Igitur. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. sep. 2021 6 Christian Faith, Free Will and Neuroscience MARCEL SAROT Tilburg University ABSTRACT In this contribution I explain what the libertarian conception of free will is, and why it is of moral and religious importance. Consequently, I defend this conception of free will against secular and religious charges. After that, I present and evaluate neuroscientific experi- ments on free will, especially Benjamin Libet’s experiments. -
Energy Medicine in Therapeutics and Human Performance / James L
B UTTERWORTH H EINEMANN An Imprint of Elsevier Science The Curtis Center Independence Square West Philadelphia, Pennsylvania 19106 ENERGY MEDICINE IN THERAPEUTICS AND ISBN 0-7506-5400-7 HUMAN PERFOMANCE Copyright © 2003, Elsevier Science (USA). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier’s Health Sciences Rights Department in Philadelphia, PA, USA: phone: (+1) 215 238 7869, fax: (+1) 215 238 2239, e-mail: [email protected]. You may also complete your request on-line via the Elsevier Science homepage (http://www.elsevier.com), by selecting ‘Customer Support’ and then ‘Obtaining Permissions.’ NOTICE Complementary and alternative medicine is an ever-changing field. Standard safety precautions must be followed, but as new research and clinical experience broaden our knowledge, changes in treatment and drug therapy may become necessary or appropriate. Readers are advised to check the most current product information provided by the manufacturer of each drug to be administered to verify the rec- ommended dose, the method and duration of administration, and contraindications. It is the respon- sibility of the licensed prescriber, relying on experience and knowledge of the patient, to determine dosages and the best treatment for each individual patient. Neither the publisher nor the editors assume any liability for any injury and/or damage to persons or property arising from this publication. Library of Congress Cataloging-in-Publication Data Oschman, James L. -
Appendix Iii
APPENDIX III MY 1950-1972 LIFE IN PBio WAS EXHILARATING! by J. Walter Woodbury (1923 - ) PREFACE My memories are almost the sole source of the material in this document. Many experimental find- ings show that memories are notoriously malleable and often wrong. My intent is to provide personal glimpses of the early heady days of the buildup of the great Department of Physiology and Biophysics at the University of Washington, School of Medicine. I hope that these will convey something of the feel for what it was like to be there then. I checked most dates and quote a few paragraphs but it is difficult or impossible to document most of what I have written. I apologize for any factual errors and/or misattributions. _____________________________________________________________________________ PROLOG gree as fast as possible. I graduated with a BS in Academic family physics in August 1943, nine quarters later when I was barely 20. I had to take 20 credit hour the My grandfather John T. Woodbury, Sr. (1863- 1936) was a lifelong educator in St. George, UT last quarter and found out that the resulting con- in pioneer times, My father, Angus M. Wood- tinuous sensory overload temporarily greatly bury (1886-1964) obtained a PhD at 45 years of diminished my ability to learn. One of the pro- age and became a well-known biology/ecology fessors in the Physics department arranged for professor at the University of Utah. All four of me to join the Radiation Laboratory at MIT as a his sons completed PhDs, as did his two son-in- Staff Member on 1 October 1943. -
Will There Be a Neurolaw Revolution?
Will There Be a Neurolaw Revolution? ∗ ADAM J. KOLBER The central debate in the field of neurolaw has focused on two claims. Joshua Greene and Jonathan Cohen argue that we do not have free will and that advances in neuroscience will eventually lead us to stop blaming people for their actions. Stephen Morse, by contrast, argues that we have free will and that the kind of advances Greene and Cohen envision will not and should not affect the law. I argue that neither side has persuasively made the case for or against a revolution in the way the law treats responsibility. There will, however, be a neurolaw revolution of a different sort. It will not necessarily arise from radical changes in our beliefs about criminal responsibility but from a wave of new brain technologies that will change society and the law in many ways, three of which I describe here: First, as new methods of brain imaging improve our ability to measure distress, the law will ease limitations on recoveries for emotional injuries. Second, as neuroimaging gives us better methods of inferring people’s thoughts, we will have more laws to protect thought privacy but less actual thought privacy. Finally, improvements in artificial intelligence will systematically change how law is written and interpreted. INTRODUCTION ...................................................................................................... 808 I. A WEAK CASE FOR A RESPONSIBILITY REVOLUTION.......................................... 809 A. THE FREE WILL IMPASSE ......................................................................... 809 B. GREENE AND COHEN’S NORMATIVE CLAIM ............................................. 810 C. GREENE AND COHEN’S PREDICTION ........................................................ 811 D. WHERE THEIR PREDICTION NEEDS STRENGTHENING .............................. 813 II. A WEAK CASE THAT LAW IS INSULATED FROM REVOLUTION .......................... -
Membrane Potential Generation by the Ion Adsorption
membranes Article Ling’s Adsorption Theory as a Mechanism of Membrane Potential Generation Observed in Both Living and Nonliving Systems Hirohisa Tamagawa 1,*, Makoto Funatani 1 and Kota Ikeda 2 1 Department of Human and Information Systems, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; [email protected] 2 Graduate School of Advanced Mathematical Sciences, Meiji University, 4-21-1, Nakano, Nakano-ku, Tokyo 165-8525, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-58-293-2529 Academic Editor: Spas Kolev Received: 28 September 2015; Accepted: 21 January 2016; Published: 26 January 2016 Abstract: The potential between two electrolytic solutions separated by a membrane impermeable to ions was measured and the generation mechanism of potential measured was investigated. From the physiological point of view, a nonzero membrane potential or action potential cannot be observed across the impermeable membrane. However, a nonzero membrane potential including action potential-like potential was clearly observed. Those observations gave rise to a doubt concerning the validity of currently accepted generation mechanism of membrane potential and action potential of cell. As an alternative theory, we found that the long-forgotten Ling’s adsorption theory was the most plausible theory. Ling’s adsorption theory suggests that the membrane potential and action potential of a living cell is due to the adsorption of mobile ions onto the adsorption site of cell, and this theory is applicable even to nonliving (or non-biological) system as well as living system. Through this paper, the authors emphasize that it is necessary to reconsider the validity of current membrane theory and also would like to urge the readers to pay keen attention to the Ling’s adsorption theory which has for long years been forgotten in the history of physiology. -
The Fessard's School of Neurophysiology After
The fessard’s School of neurophysiology after the Second World War in france: globalisation and diversity in neurophysiological research (1938-1955) Jean-Gaël Barbara To cite this version: Jean-Gaël Barbara. The fessard’s School of neurophysiology after the Second World War in france: globalisation and diversity in neurophysiological research (1938-1955). Archives Italiennes de Biologie, Universita degli Studi di Pisa, 2011. halshs-03090650 HAL Id: halshs-03090650 https://halshs.archives-ouvertes.fr/halshs-03090650 Submitted on 11 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Fessard’s School of neurophysiology after the Second World War in France: globalization and diversity in neurophysiological research (1938-1955) Jean- Gaël Barbara Université Pierre et Marie Curie, Paris, Centre National de la Recherche Scientifique, CNRS UMR 7102 Université Denis Diderot, Paris, Centre National de la Recherche Scientifique, CNRS UMR 7219 [email protected] Postal Address : JG Barbara, UPMC, case 14, 7 quai Saint Bernard, 75005, -
Biologicau Co~Ntrir~Utio~Rne to the Development Of
,- B BiologicaU Co~ntriR~utio~rneto the Development of Psychology KARL H. PRIBRAM AND DANIEL N. ROBINSON INTRODUCTION This chapter concerns several important influences that biology has had on the development of psychology as a science. Specifically, we attempt to account for an apparent paradox: In the nineteenth century, rapid advances were made in relating biology in general and brain func- tion in particular to the phenomena of mind. Throughout much of the first half of the twentieth century, however, these same relationships were all but ignored and the foundations for a scientific psychology were sought in the environment. The biological aspects of psychology, perhaps more than other special branches of the discipline, resist historical compression. Psychobiology, as we shall call the subject,' is deeply rooted in both philosophy and 4 ' There is still no universally accepted criterion for distinguishing among the terms physiological psychology, psychobiology, neuropsychology, and biopsychology. A grow- ' ing convention would reserve the term neuropsychology to theory about the human ; nervous system based on research involving complex cognitive processes, often in settings in which clinical findings are directly relevant. Physiological psychology strikes many as too restricted, for much current work falls under headings such as biophysics, computer science, or microanatomy that are synonymous with physiology. Thus, psychobiology is used here to refer to the broadest range of correlative studies in which biobehavioral investigations are undertaken and referenced to phenomenal experience. 345 POINTS OF VIEW IN THE Copyright 0 1985 by Academic Press, Inc. MODERN HISTORY OF PSYCHOLOGY All rights of reprod~lctionin any form resewed. ISBN 0-12-148510-2 346 Karl H. -
An Emergentist Interpretation of Benjamin Libet
6 MY BRAIN MADE ME NOT DO IT: AN EMERGENTIST INTERPRETATION OF BENJAMIN LIBET Daniel Pallarés-Domínguez 1. INTRODUCTION Since it became a discipline in 2002 (Safire, 2002), neuroethics has been characterised in two ways: “ethics of neuroscience” or “neuroscience of ethics” (Roskies, 2002: 21-22; Cortina, 2010: 131-133; 2011: 44). The former refers to the nature of the ethics applied to review the ethical practices that imply clinically treating the human brain. The latter ‒neu- roscience of ethics‒ implies research into more transcendental philo- sophical notions of the human being ‒free will, personal identity, inten- tion and control, emotion and reason relations‒ but from the brain functions viewpoint. For some researchers, studying the brain by neurosciences allows us to talk about “neuroculture” (Mora, 2007; Frazzeto and Anker, 2009), which may help solve questions such as free will, desicion making, and even responsibility, among other elements inherent to human moral. Others, however, look at it from a more prudent viewpoint, and have indicated today’s challenges that neurosciences find with social sciences –especially ethics, economy, education and politics– in an attempt to achieve true interdisciplinary dialogue (Cortina, 2012; Salles, 2013). In line with this interdisciplinary dialogue tradition in neurosciences, the present work presents a brief review of the challenges that the ad- vances made in the neuroethics field pose to free will. As part of this review, Ramon Llull Journal_07.indd 121 30/05/16 11:56 122 RAMON LLULL JOURNAL OF APPLIED ETHICS 2016. iSSUE 7 pp. 121-141 we centre specifically on the critics of the reductionism neuroscience tradition, which basically takes B. -
HALLOWELL DAVIS August 31, 1896–August 22, 1992
NATIONAL ACADEMY OF SCIENCES HALLO W E L L D AVIS 1896—1992 A Biographical Memoir by RO BE R T G A L A MB OS Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. HALLOWELL DAVIS August 31, 1896–August 22, 1992 BY ROBERT GALAMBOS HEN HALLOWELL DAVIS began his experiments on the Wnervous system in 1922, the number of American neu- rophysiologists he might talk to—the neuroscientists of that day—could be counted almost literally on the fingers of one hand. When he died seventy years later there were more than 15,000 members of the Society for Neuroscience (U. S. A.), and he was universally recognized as the world’s leading authority on the ear and hearing. He owed this position in part to an uncanny knack for selecting exactly the right moment to begin working on a problem, and be- cause throughout his life he was simultaneously perform- ing a new experiment and writing up a finished one. These activities, plus his interactions with a small army of friends, students, and associates here and abroad took him to the top of his profession and kept him there. The first brainwaves seen on the American continent came out of his own head in 1933, recorded by his graduate stu- dents using equipment he had designed. At about the same time he was among the first anywhere to record animal cochlear potentials, human evoked brain potentials, and the activity of single nerve cells at work inside an animal brain.