Cells, Tissues and Organs of the Immune System
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Regulate CD4 T Cell Responses Dependent Red Pulp Macrophages − CSF-1
CSF-1−Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses Daisuke Kurotaki, Shigeyuki Kon, Kyeonghwa Bae, Koyu Ito, Yutaka Matsui, Yosuke Nakayama, Masashi Kanayama, This information is current as Chiemi Kimura, Yoshinori Narita, Takashi Nishimura, of September 29, 2021. Kazuya Iwabuchi, Matthias Mack, Nico van Rooijen, Shimon Sakaguchi, Toshimitsu Uede and Junko Morimoto J Immunol published online 14 January 2011 http://www.jimmunol.org/content/early/2011/01/14/jimmun Downloaded from ol.1001345 Supplementary http://www.jimmunol.org/content/suppl/2011/01/14/jimmunol.100134 Material 5.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 14, 2011, doi:10.4049/jimmunol.1001345 The Journal of Immunology CSF-1–Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses Daisuke Kurotaki,*,† Shigeyuki Kon,† Kyeonghwa Bae,† Koyu Ito,† Yutaka Matsui,* Yosuke Nakayama,† Masashi Kanayama,† Chiemi Kimura,† Yoshinori Narita,‡ Takashi Nishimura,‡ Kazuya Iwabuchi,x Matthias Mack,{ Nico van Rooijen,‖ Shimon Sakaguchi,# Toshimitsu Uede,*,† and Junko Morimoto† The balance between immune activation and suppression must be regulated to maintain immune homeostasis. -
Atoh8 Is a Regulator of Intestinal Microfold Cell (M Cell) Differentiation Joel Johnson George1, Laura Martin-Diaz1, Markus Ojanen1, Keijo Viiri1
bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443378; this version posted May 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Atoh8 is a regulator of intestinal microfold cell (M cell) differentiation Joel Johnson George1, Laura Martin-Diaz1, Markus Ojanen1, Keijo Viiri1 1Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University Tampere, Finland. Grant Support: This work was supported by the Academy of Finland (no. 310011), Tekes (Business Finland) (no. 658/31/2015), Pediatric Research Foundation, Sigrid Jusélius Foundation, Mary och Georg C. Ehrnrooths Stiftelse, Laboratoriolääketieteen Edistämissäätiö sr. The funding sources played no role in the design or execution of this study or in the analysis and interpretation of the data. Abstract Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, its development and differentiation remains yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell associated markers. -
Primary Splenic and Nodal Marginal Zone Lymphoma
J. Clin. Exp. Hematopathol Vol. 45, No. 1, Aug 2005 Review Article Primary Splenic and Nodal Marginal Zone Lymphoma: Jacques Diebold, Agne`s Le Tourneau, Eva Comperat, Thierry Molina and Jose´ e Audouin Primary splenic and nodal marginal zone (MZ) lymphomas are rare small B cell lymphomas presenting with similar histopathologic features. The neoplastic cell population mostly consists of monocytoid B cells organized in a MZ pattern, associated with centrocytoid cells colonizing follicles. About 50% of cases have a monotypic plasma cell component. The different histopathologic patterns and differential diagnosis are discussed here. Both diseases share a similar immunophenotype, with the expression of B-cell associated antigens and restriction of immunoglobulin light chain. The only difference is the more frequent expression of IgD in splenic than in nodal lymphomas. The most recent findings in genetics and molecular biology are presented and discussed. The main clinical and biological symptoms are described and the similarity of some cases with Waldenstro¨ms macroglobulinemia is stressed. Both lymphomas present with the same type of bone marrow involvement with a high frequency of intravascular infiltrates, which can be associated with interstitial and nodular infiltrates. Transformation into diffuse large B cell lymphoma occurs in about 10 to 15% of the cases. The outcome in many splenic MZ lymphomas is characterized by a lengthy survival after splenectomy (9 to 13 years or longer), despite the absence of a consensus on the optimal treatment. Nodal MZ lymphoma has a more aggressive evolution and seems to only be curable at an early stage. Further studies are needed of both lymphomas to improve treatment and prognosis. -
Screening of Surface Markers on Rat Intestinal Mucosa Microfold Cells by Using Laser Capture Microdissection Combined with Protein Chip Technology
Int J Clin Exp Med 2014;7(4):932-939 www.ijcem.com /ISSN:1940-5901/IJCEM1401061 Original Article Screening of surface markers on rat intestinal mucosa microfold cells by using laser capture microdissection combined with protein chip technology Junyong Zhao*, Xiaoyu Li*, Qifeng Luo, Lei Xu, Lei Chen, Li Chai, Yixiang Huang, Lin Fang Department of Breast and Thyroid Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, 200072, China. *Equal contributors. Received January 21, 2014; Accepted April 10, 2014; Epub April 15, 2014; Published April 30, 2014 Abstract: Objective: The objective of this research was to investigate the possibility of screening surface markers on rat intestinal mucosa microfold cells (M cells) by using laser capture microdissection (LCM) combined with protein chip technology. Methods: We labeled rat intestinal mucosa microfold cells with Ulex europaeus agglutinin (UEA)-1 antibody and visualized these by immunofluorescence staining. Using the Proteome Profiler rat protein chip, we analyzed the protein expression profiles of LCM M-cells compared to lymph follicle-associated epithelial (FAE) cells, and we identified potential differences to screen for marker proteins. Results: M cells can be clearly distinguished from lymphoid FAE cells under the fluorescence microscope. We successfully cut, isolated, and obtained microfold and lymph FAE cells with more than 95% homogeneity. Six differentially expressed proteins were identified through comparison of the protein chip profiles of these 2 cell types. Among these, VEGF, LIX, CNTF, and IL-1α/IL-1F1 were found to be at significantly lower levels in M cells, IL-1ra/IL-1F3 and MIG/CXCL9 appeared in significantly higher levels in M cells (P < 0.05). -
Cells, Tissues and Organs of the Immune System
Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1. -
Centers Differentiation Stages in Human Germinal Patterns Reflect
Cutting Edge: Polycomb Gene Expression Patterns Reflect Distinct B Cell Differentiation Stages in Human Germinal Centers This information is current as of September 27, 2021. Frank M. Raaphorst, Folkert J. van Kemenade, Elly Fieret, Karien M. Hamer, David P. E. Satijn, Arie P. Otte and Chris J. L. M. Meijer J Immunol 2000; 164:1-4; ; doi: 10.4049/jimmunol.164.1.1 Downloaded from http://www.jimmunol.org/content/164/1/1 References This article cites 22 articles, 11 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/164/1/1.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. c Cutting Edge: Polycomb Gene Expression Patterns Reflect Distinct B Cell Differentiation Stages in Human Germinal Centers Frank M. Raaphorst,1* Folkert J. van Kemenade,* Elly Fieret,* Karien M. -
Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes That Infiltrate Atherosclerotic Lesions
Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes that Infiltrate Atherosclerotic Lesions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Robbins, Clinton S., Aleksey Chudnovskiy, Philipp J. Rauch, Jose- Luiz Figueiredo, Yoshiko Iwamoto, Rostic Gorbatov, Martin Etzrodt, et al. 2012. “Extramedullary Hematopoiesis Generates Ly-6C High Monocytes That Infiltrate Atherosclerotic Lesions.” Circulation 125 (2): 364–74. https://doi.org/10.1161/circulationaha.111.061986. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384259 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Circulation. Author manuscript; available in PMC 2013 January 17. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Circulation. 2012 January 17; 125(2): 364±374. doi:10.1161/CIRCULATIONAHA.111.061986. Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes that Infiltrate Atherosclerotic Lesions Clinton S. Robbins, PhD1,*, Aleksey Chudnovskiy, MS1,*, Philipp J. Rauch, BS1,*, Jose-Luiz Figueiredo, MD1, Yoshiko Iwamoto, BS1, Rostic Gorbatov, BS1, Martin Etzrodt, BS1, Georg F. Weber, MD1, Takuya Ueno, MD, PhD1, Nico van Rooijen, PhD2, Mary Jo Mulligan-Kehoe, PhD3, Peter -
201028 the Lymphatic System 2 – Structure and Function of The
Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Keywords Immunity/Anatomy/Stem cell production/Lymphatic system Systems of life This article has been Lymphatic system double-blind peer reviewed In this article... l How blood and immune cells are produced and developed by the lymphatic system l Clinical significance of the primary and secondary lymphoid organs l How the lymphatic system mounts an immune response and filters pathogens The lymphatic system 2: structure and function of the lymphoid organs Key points Authors Yamni Nigam is professor in biomedical science; John Knight is associate The lymphoid professor in biomedical science; both at the College of Human and Health Sciences, organs include the Swansea University. red bone marrow, thymus, spleen Abstract This article is the second in a six-part series about the lymphatic system. It and clusters of discusses the role of the lymphoid organs, which is to develop and provide immunity lymph nodes for the body. The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The Blood and immune lymph nodes and spleen are the major secondary lymphoid organs; they filter out cells are produced pathogens and maintain the population of mature lymphocytes. inside the red bone marrow, during a Citation Nigam Y, Knight J (2020) The lymphatic system 2: structure and function of process called the lymphoid organs. Nursing Times [online]; 116: 11, 44-48. haematopoiesis The thymus secretes his article discusses the major become either erythrocytes, leucocytes or hormones that are lymphoid organs and their role platelets. -
1 | Page: Immune Cells and Tissues Swailes Cells and Tissues of The
Cells and Tissues of the Immune System N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 20: pp226-2480 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 21: pp396-429 Learning objectives 1) Identify the major cells of the immune system and briefly outline their function 2) Describe the general structure of lymphoid tissue 3) Differentiate between primary and secondary immune organs 4) Identify the thymus and discuss the role of its cells in ‘educating’ immature T-cells 5) Identify a lymph node and outline how an immune response is triggered here 6) Identify the spleen and describe the role of red and white pulp in filtering the blood and reacting to blood borne antigens 7) Differentiate between MALT in the oral cavity (tonsils) 8) Know where to find and how to identify examples of BALT and GALT Major Take Home Points A. Lymphoid tissues are composed of different types of lymphocytes and supporting cells within a scaffold of Type III collagen/reticular fibers B. The major primary lymphoid organs are encapsulated organs where immature lymphocytes are born (bone marrow) and become immunocompetent (thymus) C. The major secondary lymphoid organs are encapsulated organs where immunocompetent lymphocytes differentiate into effector cells after exposure to antigen in the blood (spleen) or lymph (nodes) D. Mucosa Associated Lymphoid Tissues (MALT) are un-encapsulated areas of lymphoid tissue within the mucosa of organs that can be identified by their lining epithelium (tonsils, GALT: ileum and appendix, BALT) 1 | Page: Immune Cells and Tissues Swailes A1: Organization of the immune system 5a A. -
Mantle Cell Lymphoma Stefano A
Editorials and Perspectives ers in myeloproliferative diseases: relationships with JAK2 Pascutto C, et al. Relation between JAK2 (V617F) mutation V617 F status, clonality, and antiphospholipid antibodies. J status, granulocyte activation, and constitutive mobilization Thromb Haemost 2007;5:1679-85. of CD34+ cells into peripheral blood in myeloproliferative 17. Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, disorders. Blood 2006;107:3676-82. Guerini V, et al. V617F JAK-2 mutation in patients with 23. Alvarez-Larrán A, Arellano-Rodrigo E, Reverter JC, essential thrombocythemia: relation to platelet, granulo- Domingo A, Villamor N, Colomer D, et al. Increased cyte, and plasma hemostatic and inflammatory molecules. platelet, leukocyte, and coagulation activation in primary Exp Hematol 2007;35:702-11. myelofibrosis. Ann Hematol 2008;87:269-76. 18. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, 24. Leibundgut EO, Horn MP, Brunold C, Pfanner-Meyer B, Colomer D, Villamor N, Bellosillo B, et al. Platelet turnover, Marti D, Hirsiger H, et al. Hematopoietic and endothelial coagulation factors, and soluble markers of platelet and progenitor cell trafficking in patients with myeloprolifera- endothelial activation in essential thrombocythemia: rela- tive diseases. Haematologica 2006;91:1465-72. tionship with thrombosis occurrence and JAK2 V617F allele 25. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman burden. Am J Hematol 2009;84:102-8. R. The presence of JAK2V617F mutation in the liver 19. Trappenburg MC, van Schilfgaarde M, Marchetti M, Spronk endothelial cells of patients with Budd-Chiari syndrome. HM, ten Cate H, Leyte A, et al. Elevated procoagulant Blood 2009;113:5246-9. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.