Genetic Catalogue, Biological Reference Collections and Online Database of European Marine Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Catalogue, Biological Reference Collections and Online Database of European Marine Fishes QUALITY OF LIFE AND MANAGEMENT OF LIVING RESOURCES PROGRAMME (1998-2002) Genetic Catalogue, Biological Reference Collections and Online Database of European Marine Fishes FINAL REPORT ANNEXES Contract number: QLRI-CT-2002-02755 Project acronym: FishTrace QoL action line: Area 14.1, Infrastructures Reporting period: 01/01/03 - 30/06/06 QLRI-CT-2002-02755 FishTrace INDEX Annexes Annex I: 1st FishTrace Plenary Meeting. Madrid, 12-14th February, 2003. Annex II: FishTrace Database Structuration Meeting. Paris, 13-14th May, 2003. Annex III: FishTrace Standardization Meeting. Stockholm, 4-7th June, 2003. Annex IV: 2nd FishTrace Plenary Meeting. Las Palmas de Gran Canaria (Spain), 19-21st November, 2003. Annex V: FishTrace Meeting on Data Validation. Ispra, Italy. 15-16th April, 2004. Annex VI: 3rd FishTrace Plenary Meeting. Paris, 25-27th November, 2004. Annex VII: FishTrace Database & Web Interface Meeting. Madrid, 11th March, 2005. Annex VIII: 4th FishTrace Plenary Meeting. Funchal (Portugal), 24-26th October, 2005. Annex IX: FishTrace Concluding Meeting. Kavala (Greece), May 10-12th, 2006. Annex X: Sampling and Taxonomy (WP2) Protocol. Annex XI: Results from Molecular Genetic Procedures Standardisation. Annex XII: Molecular identification and DNA barcoding (WP3). Protocol and PCR conditions. Annex XIII: Phylogenetic Validation of Sequences. Guidelines. Annex XIV: Preparing sequence files for the Sequin tool. Annex XV: Reference Collections (WP5) Protocol, Loan Request Form and Invoice of Specimens. Annex XVI: Guidelines for Validation purposes (WP7) including a protocol defining format for the Validation tasks. Annex XVII: Concise Protocol for the online validation process. Annex XVIII: The Bibliography Module in the FishTrace Database. Annex XIX: Results from the genetic population structure analysis. Annex XX: Results from haplotype connectivity network analysis. Annex XXI: Final Report on Validation and Missing Data. Annex XXII: Control Data Validation Flow Document. Annex XXIII: Leaflet presenting the FishTrace project. QLRI-CT-2002-02755 FishTrace ANNEX I Annex I: 1st FishTrace Plenary Meeting. Madrid, 12-14 February, 2003. 1st FISHTRACE MEETING 12-14 February 2003 Madrid, Spain Held at NH Prisma Hotel, and Department of Biochemistry and Molecular Biology IV, UCM Meeting Participants Participant 1 (UCM): José M. Bautista, Amalia Diez, Gema González, Susana Schönhuth, Rafael González, Faye Taylor; Participant 2 (EC-JRC-IPSC): Philippe Carreau; Participant 3 (NRM): Sven Kullander, Michael Noren; Participant 4 (ICCM): Jose Antonio González, Ignacio Lozano, Fernanda Marreo, Montserrat Gimeno; Participant 5 (IFREMER): Monique Etienne, Veronique Verrez-Bagnis, Marc Jerome; Participant 6 (RIVO): Hilde van Pelt; Participant 7 (IMAR): Mafalda Freitas, Rosa Pestana; Participant 9 (NAGREF): Grigorius Krey; Alexis Tsangridis; Participant 10 (MNHN): Guy Duhamel, Patrice Pruvost. Meeting Agenda: 1st DAY, February 12 – Wednesday 1. Introduction to FishTrace 2. Presentation of participant teams 3. Workpackages structure and information flow. 4. Schedules: General, Workpackages, Participant teams, Milestones and deliverables 5. Visit to the molecular biology laboratories at UCM and demonstrations on sampling for taxonomy, genetics and museums. 2nd DAY, February 13 - Thursday 6. WP1: Standardization of Methods and Legal Aspects 7. WP2: Sampling and Taxonomy. 8. WP3: Molecular Genetic Identification. 9. WP4: Biogeographical Molecular Haplotyping. 10. WP5: Biological Reference Collections. 11. WP6: Database Development. 12. WP7: Validation in Database. 13. WP 8: Implementation of WWW Technologies. 3rd DAY, February 14 - Friday 14. WP 9: Dissemination and Applicability. 15. Organization of practical work and information flow (Taxonomic, genetic and Collections Data Blocks: Research teams involved and flow) 16. Information flow at each geographical location and to the database 17. Implementation of the overviewing performance and periodical progress reports 18.. Financial and administrative matters. 19. Next Meetings. MEETING MINUTES 1.- Introduction to FishTrace: The meeting started at 09:30 hours at the NH Prisma Hotel. The coordinator for the project, Dr José Bautista, welcomed the participants and presented the origins and general structure of the project, as well as the European dimension in terms of coverage of the geographic areas. 2.- Presentation of participant teams: 10:00 - 11:15: All participants did a presentation of the scientific groups participating in the project. They included details on their institutions; experience and other projects in which they participate; personnel assigned to this project, their performance and responsibilities, including the geographical area of their analysis (sampling, genetics and/or collections), and a briefing of the Workpackages in which the institution participates. Following are the names of those who presented each institution: Participant 1 (UCM): Amalia Diez Participant 2 (EC-JRC-IPSC): Philippe Carreau Participant 3 (NRM): Sven Kullander Participant 4 (ICCM): Jose Antonio González Participant 5 (IFREMER): Monique Etienne Participant 6 (RIVO): Hilde V Pelt Participant 7 (IMAR): Mafalda Freitas Participant 9 (NAGREF): Grigorius Krey Participant 10 (MNHN): Guy Duhamel Ignacio Lozano did the presentation on behalf of Participant 8 (TFMC) and informed the participants that Dr. Sebastian Jimenez, the scientist in charge of this group, could not attend the meeting. 3. Workpackages structure and information flows. At 11:45: Dr Bautista presented the general objectives of the project drawn over each Workpackage structure and how the success on the project depends on the maintenance of the information flow among Workpackages. At the general discussion on this topic, it was pointed out the urgent need for a quick standardization of all methods to start the tasks for Workpackages 2 and 3, and a detailed definition of the database fields in order to make them compatible with other cross-linked databases of interest for FishTrace. Keeping the right of use on photographs and sequences for specific purposes (books, publications, tools for genetic identification) was also discussed with the understanding that the project is founded to make it available to the public. In this respect it was also observed the need to start Workpackage 9, dissemination, as soon as possible with the coordination activity of IFREMER to detect possible interested parties in our complete set of information (sequences, photographs, etc). 4. Schedules: General, Workpackages, Participant teams, Milestones and deliverables At 12:30 : there was a definition of the project schedules indicating the timetables to be covered. The context of the project planning including each Workpackage, the contribution of each participant institution, the milestones to be reached and the deliverables during the time course of the project. 5. Visit to molecular biology laboratories at UCM and demonstrations on sampling for taxonomy, genetics and museums. At 15:30: there was a visit to the coordinating group’s laboratory at the Universidad Complutense de Madrid. There was a demonstration on taxonomy sampling, for genetics and museums. Tentative protocols for sampling and molecular genetics were given to each participant. 2nd Day 6. WP1: Standardization of Methods and Legal Aspects At 09:30 Dr Van Pelt presented the tasks covered by Wordpackage 1 (standardization) for which RIVO is the leader. In the presentation a list of subjects to standardize was shown, making special emphasis in those aspects of sampling, DNA, PCR and sequencing, data compilation, images and collection. Particular attention was given to legal aspects on public access to the database; patents and exchange flow of biological samples. The list of standardized methods of FishTrace will be available through the FishTrace web site, so all groups are able to provide identical data quality. A “legal committee” formed by Hilde van Pelt (RIVO), Guy Duhamel (MNHN), Monique Etienne (IFREMER) and Philippe Carreau (EJC) will help and research to advise on legal questions related to data releasing from FrishTrace. During the discussion it was agreed that the protocols for standardization must circulate form the Workpackage leader of each standardized tasks to the other contributors in the same Worpackage. Finally, RIVO will act as a referee for all method standarization and produce the definitive standardized protocol. 7. WP2: Sampling and Taxonomy. At 10:15 Dr Kullander presented the tasks covered by Workpackage 2 (Sampling + Taxonomy) for which NRM is the Workpackage leader. Within the objectives of this Workpackage it was described the sampling procedure and the corresponding data and material to be obtained from each sample. Particular emphasis was given to the systematic work, and the relationship with possible different haplotypes detected in Workpackage 4 from the different geographical locations. The need for a standardization and agreement on the systematic by all groups contributing was clear during the discussion, in particular related to the fields in the database. Issues related to regional data compilation and literature was also raised. This is expected to maintain a certain degree of originality in terms of discovering the most local particularities and not to download from other databases. It was also mentioned that fish photos must retain the copyright of the photographer but them will be freely released among the participants of the project. The need for agreements on what
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • From Marine Fishes Off New Caledonia, with a Key to Species of Cucullanus from Anguilliformes
    Parasite 25, 51 (2018) Ó F. Moravec and J.-L. Justine, published by EDP Sciences, 2018 https://doi.org/10.1051/parasite/2018050 urn:lsid:zoobank.org:pub:FC92E481-4FF7-4DD8-B7C9-9F192F373D2E Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Three new species of Cucullanus (Nematoda: Cucullanidae) from marine fishes off New Caledonia, with a key to species of Cucullanus from Anguilliformes František Moravec1 and Jean-Lou Justine2,* 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 Cˇ eské Budeˇjovice, Czech Republic 2 Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 51, 57 rue Cuvier, 75005 Paris, France Received 16 July 2018, Accepted 8 August 2018, Published online 20 September 2018 Abstract – Based on light and scanning electron microscopical studies of nematode specimens from the digestive tract of some rarely collected anguilliform and perciform fishes off New Caledonia, three new species of Cucullanus Müller, 1777 (Cucullanidae) are described: C. austropacificus n. sp. from the longfin African conger Conger cinereus (Congridae), C. gymnothoracis n. sp. from the lipspot moray Gymnothorax chilospilus (Muraenidae), and C. incog- nitus n. sp. from the seabream Dentex fourmanoiri (Sparidae). Cucullanus austropacificus n. sp. is characterized by the presence of cervical alae, ventral sucker, alate spicules 1.30–1.65 mm long, conspicuous outgrowths of the ante- rior and posterior cloacal lips and by elongate-oval eggs measuring 89–108 · 48–57 lm; C. gymnothoracis n. sp. is similar to the foregoing species, but differs from it in the absence of cervical alae and the posterior cloacal outgrowth, in the shape and size of the anterior cloacal outgrowth and somewhat shorter spicules 1.12 mm long; C.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • The Biology and Ecology of Samson Fish Seriola Hippos
    The biology of Samson Fish Seriola hippos with emphasis on the sportfishery in Western Australia. By Andrew Jay Rowland This thesis is presented for the degree of Doctor of Philosophy at Murdoch University 2009 DECLARATION I declare that the information contained in this thesis is the result of my own research unless otherwise cited. ……………………………………………………. Andrew Jay Rowland 2 Abstract This thesis had two overriding aims. The first was to describe the biology of Samson Fish Seriola hippos and therefore extend the knowledge and understanding of the genus Seriola. The second was to uses these data to develop strategies to better manage the fishery and, if appropriate, develop catch-and-release protocols for the S. hippos sportfishery. Trends exhibited by marginal increment analysis in the opaque zones of sectioned S. hippos otoliths, together with an otolith of a recaptured calcein injected fish, demonstrated that these opaque zones represent annual features. Thus, as with some other members of the genus, the number of opaque zones in sectioned otoliths of S. hippos are appropriate for determining age and growth parameters of this species. Seriola hippos displayed similar growth trajectories to other members of the genus. Early growth in S. hippos is rapid with this species reaching minimum legal length for retention (MML) of 600mm TL within the second year of life. After the first 5 years of life growth rates of each sex differ, with females growing faster and reaching a larger size at age than males. Thus, by 10, 15 and 20 years of age, the predicted fork lengths (and weights) for females were 1088 (17 kg), 1221 (24 kg) and 1311 mm (30 kg), respectively, compared with 1035 (15 kg), 1124 (19 kg) and 1167 mm (21 kg), respectively for males.
    [Show full text]
  • The Neotropical Genus Austrolebias: an Emerging Model of Annual Killifishes Nibia Berois1, Maria J
    lopmen ve ta e l B D io & l l o l g e y C Cell & Developmental Biology Berois, et al., Cell Dev Biol 2014, 3:2 ISSN: 2168-9296 DOI: 10.4172/2168-9296.1000136 Review Article Open Access The Neotropical Genus Austrolebias: An Emerging Model of Annual Killifishes Nibia Berois1, Maria J. Arezo1 and Rafael O. de Sá2* 1Departamento de Biologia Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay 2Department of Biology, University of Richmond, Richmond, Virginia, USA *Corresponding author: Rafael O. de Sá, Department of Biology, University of Richmond, Richmond, Virginia, USA, Tel: 804-2898542; Fax: 804-289-8233; E-mail: [email protected] Rec date: Apr 17, 2014; Acc date: May 24, 2014; Pub date: May 27, 2014 Copyright: © 2014 Rafael O. de Sá, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Annual fishes are found in both Africa and South America occupying ephemeral ponds that dried seasonally. Neotropical annual fishes are members of the family Rivulidae that consist of both annual and non-annual fishes. Annual species are characterized by a prolonged embryonic development and a relatively short adult life. Males and females show striking sexual dimorphisms, complex courtship, and mating behaviors. The prolonged embryonic stage has several traits including embryos that are resistant to desiccation and undergo up to three reversible developmental arrests until hatching. These unique developmental adaptations are closely related to the annual fish life cycle and are the key to the survival of the species.
    [Show full text]
  • Order ZEIFORMES PARAZENIDAE Parazens P.C
    click for previous page Zeiformes: Parazenidae 1203 Order ZEIFORMES PARAZENIDAE Parazens P.C. Heemstra, South African Institute for Aquatic Biodiversity, South Africa iagnostic characters: Small to moderate-sized (to 30 cm) oblong fishes, the head and body com- Dpressed; body depth slightly less than head length, contained 2.6 to 2.9 times in standard length; head naked, the bones thin and soft; opercular bones weakly serrate; mouth large, terminal, the upper jaw extremely protrusile; maxilla widely expanded posteriorly, and mostly exposed when mouth is closed; no supramaxilla; jaws with 1 or 2 rows of small, slender, conical teeth; vomer with a few short stout teeth;gill rakers (including rudiments) 2 on upper limb, 8 on lower limb.Eye diameter about 1/3 head length and slightly less than snout length.Branchiostegal rays 7.Dorsal fin divided, with 8 slender spines and 26 to 30 soft rays; anal fin with 1 minute spine and 30 to 32 soft rays; dorsal-, anal-, and pectoral-fin rays un- branched; caudal fin forked, with 11 principal rays and 9 branched rays; pectoral fin with 15 or 16 rays, shorter than eye diameter; pelvic fins with 1 unbranched and 5 or 6 branched soft rays, but no spine, fin origin posterior to a vertical at pectoral-fin base. Scales moderate in size, weakly ctenoid, and deciduous; 2 lateral lines originating on body at upper end of operculum and running posteriorly about 4 scale rows apart, gradually converging to form a single line on caudal peduncle. Caudal peduncle stout, the least depth about equal to its length and slightly less than eye diameter.Vertebrae 34.Colour: body reddish or silvery; large black blotch on anterior margin of dorsal fin.
    [Show full text]
  • The Evolutionary History of the Genus Seriola and the Phylogeography and Genetic Diversity of S. Lalandi (Yellowtail) Across
    The evolutionary history of the genus Seriola and the phylogeography and genetic diversity of S. lalandi (yellowtail) across its distribution range By Belinda Louisa Swart Dissertation presented for the degree of Doctor of Philosophy in the Faculty of Genetics at Stellenbosch University Supervisor: Prof. Rouvay Roodt-Wilding Co-supervisor: Dr. Aletta E. Bester-van der Merwe Dr. Sophie von der Heyden April 2014 1 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. April 2014 Copyright © 2014 Stellenbosch University All rights reserved 1 Stellenbosch University http://scholar.sun.ac.za Abstract The genus Seriola includes several important commercial fish species, yet the phylogenetic relationships between species have not been fully investigated to date. This study reports the first molecular phylogeny for this genus based on two mitochondrial (Cytb and COI) and two nuclear gene (RAG1 and Rhod) fragments for all extant Seriola species (nine species, n = 27). The phylogenetic patterns resolved three main lineages: a ((S. fasciata and S. peruana), S. carpenteri) clade, a (S. dumerili and S. rivoliana) clade and a (S. lalandi and S. quinqueradiata) clade. The closure of the Tethys Sea (12 - 20 MYA) coincides with divergence of the ((S. fasciata and S.
    [Show full text]
  • Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
    BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Larval Development of Dagetichthys Marginatus (Soleidae) Obtained from Hormone-Induced Spawning Under Artificial Rearing Conditions
    SCIENTIA MARINA 71(3) September 2007, 421-428, Barcelona (Spain) ISSN: 0214-8358 Larval development of Dagetichthys marginatus (Soleidae) obtained from hormone-induced spawning under artificial rearing conditions ERNST F. THOMPSON 1, NADINE A. STRYDOM 2 and THOMAS HECHT 1 1 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, 6139, South Africa. E-mail: [email protected] or [email protected] 2 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa. SUMMARY: Dagetichthys marginatus (formerly Synaptura marginata) larvae were laboratory-reared from wild caught adult broodstock as part of an aquaculture research project in temperate South Africa. A larval description for the species is provided in this paper. This work also represents the first larval description for the genus Dagetichthys, which is represent- ed by five species, three of which occur in the western Indian Ocean. Larval development in D. marginatus is typical of Soleidae. Dagetichthys marginatus larvae are heavily pigmented, with four characteristic melanophore “blotches” on the fin- fold. These larvae are easily distinguished from other soleid larvae commonly encountered in temperate South Africa based on the large size at flexion (5-7.06 mm BL) and the heavily pigmented body. Laboratory-reared postflexion larvae in this study showed similar meristic counts to those of wild caught adult fish. Despite the common occurrence of mature adults of this species in shallow marine waters off temperate South Africa, larvae are absent from nearshore ichthyoplankton catches. As yet, the spawning strategy of the species is unknown. Keywords: Synaptura, fish larvae, description, temperate ichthyoplankton, soleids, aquaculture.
    [Show full text]
  • Biodiversity of Arctic Marine Fishes: Taxonomy and Zoogeography
    Mar Biodiv DOI 10.1007/s12526-010-0070-z ARCTIC OCEAN DIVERSITY SYNTHESIS Biodiversity of arctic marine fishes: taxonomy and zoogeography Catherine W. Mecklenburg & Peter Rask Møller & Dirk Steinke Received: 3 June 2010 /Revised: 23 September 2010 /Accepted: 1 November 2010 # Senckenberg, Gesellschaft für Naturforschung and Springer 2010 Abstract Taxonomic and distributional information on each Six families in Cottoidei with 72 species and five in fish species found in arctic marine waters is reviewed, and a Zoarcoidei with 55 species account for more than half list of families and species with commentary on distributional (52.5%) the species. This study produced CO1 sequences for records is presented. The list incorporates results from 106 of the 242 species. Sequence variability in the barcode examination of museum collections of arctic marine fishes region permits discrimination of all species. The average dating back to the 1830s. It also incorporates results from sequence variation within species was 0.3% (range 0–3.5%), DNA barcoding, used to complement morphological charac- while the average genetic distance between congeners was ters in evaluating problematic taxa and to assist in identifica- 4.7% (range 3.7–13.3%). The CO1 sequences support tion of specimens collected in recent expeditions. Barcoding taxonomic separation of some species, such as Osmerus results are depicted in a neighbor-joining tree of 880 CO1 dentex and O. mordax and Liparis bathyarcticus and L. (cytochrome c oxidase 1 gene) sequences distributed among gibbus; and synonymy of others, like Myoxocephalus 165 species from the arctic region and adjacent waters, and verrucosus in M. scorpius and Gymnelus knipowitschi in discussed in the family reviews.
    [Show full text]