Ice Core Based Climate Reconstruction from the Mongolian Altai
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
(2016), Volume 4, Issue 2, 77-90
ISSN 2320-5407 International Journal of Advanced Research (2016), Volume 4, Issue 2, 77-90 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH RESEARCH ARTICLE LICHENOMETRIC DATING CURVE AS APPLIED TO GLACIER RETREAT STUDIES IN THE HIMALAYAS. Gaurav K. Mishra, Santosh Joshi and Dalip K. Upreti. Lichenology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001. Manuscript Info Abstract Manuscript History: The study critically favours the importance of lichens in estimating palaeoclimatic events and its use in depicting the future discretion regarding Received: 14 December 2015 Final Accepted: 19 January 2016 glacier retreat. Besides the various lichenometric studies carried out in Indian Published Online: February 2016 Himalayan region, the world-wide classical work of different glaciologist and geologist on different applications of lichenometry is also well focused. Key words: The study also highlights the benefits, restrains, and drawbacks associated Lichens, lichenometry,glacier with the lichenometry. Being a globally accepted biological technique retreat,India. particular emphasis is given on the need of innovative approach in implementation of lichenometry in Indian Himalayan region. *Corresponding Author Gaurav K. Mishra. Copy Right, IJAR, 2016,. All rights reserved. Introduction:- Lichens are slow growing organisms and take several years to get established in nature. Lichens are a unique group of plants, comprising of two micro-organisms, fungus (mycobiont), an organism capable of producing food via photosynthesis and alga (photobiont). These photobionts are predominantly members of the chlorophyta (green algae) or cynophyta (blue-green algae or cynobacteria). The peculiar nature of lichens enables them to colonize variety of substrate like rock, boulders, bark, soil, leaf and man-made buildings. -
Conversion of GISP2-Based Sediment Core Age Models to the GICC05 Extended Chronology
Quaternary Geochronology 20 (2014) 1e7 Contents lists available at ScienceDirect Quaternary Geochronology journal homepage: www.elsevier.com/locate/quageo Short communication Conversion of GISP2-based sediment core age models to the GICC05 extended chronology Stephen P. Obrochta a, *, Yusuke Yokoyama a, Jan Morén b, Thomas J. Crowley c a University of Tokyo Atmosphere and Ocean Research Institute, 227-8564, Japan b Neural Computation Unit, Okinawa Institute of Science and Technology, 904-0495, Japan c Braeheads Institute, Maryfield, Braeheads, East Linton, East Lothian, Scotland EH40 3DH, UK article info abstract Article history: Marine and lacustrine sediment-based paleoclimate records are often not comparable within the early to Received 14 March 2013 middle portion of the last glacial cycle. This is due in part to significant revisions over the past 15 years to Received in revised form the Greenland ice core chronologies commonly used to assign ages outside of the range of radiocarbon 29 August 2013 dating. Therefore, creation of a compatible chronology is required prior to analysis of the spatial and Accepted 1 September 2013 temporal nature of climate variability at multiple locations. Here we present an automated mathematical Available online 19 September 2013 function that updates GISP2-based chronologies to the newer, NGRIP GICC05 age scale between 8.24 and 103.74 ka b2k. The script uses, to the extent currently available, climate-independent volcanic syn- Keywords: Chronology chronization of these two ice cores, supplemented by oxygen isotope alignment. The modular design of Ice core the script allows substitution for a more comprehensive volcanic matching, once it becomes available. Sediment core Usage of this function highlights on the GICC05 chronology, for the first time for the entire last glaciation, GICC05 the proposed global climate relationships during the series of large and rapid millennial stadial- interstadial events. -