Concepts and Approaches for Mars Exploration1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selection of the Insight Landing Site M. Golombek1, D. Kipp1, N
Manuscript Click here to download Manuscript InSight Landing Site Paper v9 Rev.docx Click here to view linked References Selection of the InSight Landing Site M. Golombek1, D. Kipp1, N. Warner1,2, I. J. Daubar1, R. Fergason3, R. Kirk3, R. Beyer4, A. Huertas1, S. Piqueux1, N. E. Putzig5, B. A. Campbell6, G. A. Morgan6, C. Charalambous7, W. T. Pike7, K. Gwinner8, F. Calef1, D. Kass1, M. Mischna1, J. Ashley1, C. Bloom1,9, N. Wigton1,10, T. Hare3, C. Schwartz1, H. Gengl1, L. Redmond1,11, M. Trautman1,12, J. Sweeney2, C. Grima11, I. B. Smith5, E. Sklyanskiy1, M. Lisano1, J. Benardino1, S. Smrekar1, P. Lognonné13, W. B. Banerdt1 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 2State University of New York at Geneseo, Department of Geological Sciences, 1 College Circle, Geneseo, NY 14454 3Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001 4Sagan Center at the SETI Institute and NASA Ames Research Center, Moffett Field, CA 94035 5Southwest Research Institute, Boulder, CO 80302; Now at Planetary Science Institute, Lakewood, CO 80401 6Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 7Department of Electrical and Electronic Engineering, Imperial College, South Kensington Campus, London 8German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany 9Occidental College, Los Angeles, CA; Now at Central Washington University, Ellensburg, WA 98926 10Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 11Institute for Geophysics, University of Texas, Austin, TX 78712 12MS GIS Program, University of Redlands, 1200 E. Colton Ave., Redlands, CA 92373-0999 13Institut Physique du Globe de Paris, Paris Cité, Université Paris Sorbonne, France Diderot Submitted to Space Science Reviews, Special InSight Issue v. -
The Reference Mission of the NASA Mars Exploration Study Team
NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal. -
Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... -
The Water on Mars Vanished. This Might Be Where It Went
The water on Mars vanished. This might be where it went. timesofindia.indiatimes.com/home/science/the-water-on-mars-vanished-this-might-be-where- it-went-/articleshow/81599751.cms NYT News Service | Mar 20, 2021, 10:32 IST Mars was once wet, with an ocean’s worth of water on its surface. Today, most of Mars is as dry as a desert except for ice deposits in its polar regions. Where did the rest of the water go? Some of it disappeared into space. Water molecules, pummeled by particles of solar wind, broke apart into hydrogen and oxygen atoms, and those, especially the lighter hydrogen atoms, sped out of the atmosphere, lost to outer space. A tall outcropping of rock, with layered deposits of sediments in the distance, marking a remnant of an ancient, long-vanished river delta in Jezero Crater, are pictured in this undated image taken by NASA's Mars rover Perseverance. (Reuters) But most of the water, a new study concludes, went down, sucked into the red planet’s rocks. And there it remains, trapped within minerals and salts. Indeed, as much as 99% of the water that once flowed on Mars could still be there, the researchers estimated in a paper published this week in the journal Science. Data from the past two decades of robotic missions to Mars, including NASA ’s Curiosity rover and the Mars Reconnaissance Orbiter, showed a wide distribution of what geologists call hydrated minerals. “It became very, very clear that it was common and not rare to find evidence of water alteration,” said Bethany Ehlmann, a professor of planetary science at the California Institute of Technology and one of the authors of the paper. -
Long-Range Rovers for Mars Exploration and Sample Return
2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth. -
ASX Presentation
STARFEST 2009 Special Report: Major Astronomy & Space Conferences Presented On: August 22, 2009 Presented By: ASX ‐ Farnaz Ghadaki (President) ‐ Nivedita Chandrasekhar (Project Director) ‐ Iman Datta (Secretary) http://asx.sa.utoronto.ca/ [email protected] Page 1 Agenda • ASX Introduction • Report on ISDC –International Space Development Conference (May 2008) • Report on Canadian Space Summit (Nov. 2008) • Report on SpaceFest (Feb. 2009) • Report on ASX’s Annual Symposium • Notable upcoming symposia/conferences • Q & A http://asx.sa.utoronto.ca/ [email protected] Page 2 ASX Introduction • ASX is the Astronomy & Space Exploration Society at the University of Toronto • ASX’s mission: educate, excite, and inspire students and the general public about astronomy and space exploration • ASX members consist of students, professionals and anyone having an interest (or just curiosity) in the fields of astronomy and space • ASX has no membership fees, and provides most of its events FREE of charge http://asx.sa.utoronto.ca/ [email protected] Page 3 ASX Highlights • Established by students in 2003 • Rapidly grown to over 1600 members • Host the LARGEST student‐run event in the GTA: The Annual ‘Expanding Canada’s Frontiers’ Symposium • Organize variety of other events throughout the year: Film Viewing Faces of Space (FoS) Talks Observing Panel Discussions http://asx.sa.utoronto.ca/ [email protected] Page 4 ASX and IYA • ASX participated in the Toronto Astronomy Festival (Jan. 10) @ OSC – Exhibitor & on planning committee • ASX Symposium (Jan. 23) embraced theme of international cooperation • Earth Hour Observing Event (Mar. 28) in collaboration with U of T Astronomy Dept • Co‐host of Yuri’s Night Celebration (Apr. -
Mars Homestead: a Mars Base Constructed from Local Materials
Space 2006 AIAA 2006-7472 19 - 21 September 2006, San Jose, California The Mars Homestead: a Mars Base Constructed from Local Materials Bruce Mackenzie Mars Foundation, [email protected], 781-944-7027, 102 Sanborn Ln. Reading, MA 01867-1009, USA Bart Leahy [email protected] , Huntsville, AL, USA Georgi Petrov [email protected] , Boston MA, USA Gary Fisher [email protected], P.O. Box 694, Bryn Athyn, PA 19009 The Mars Homestead™ project is a detailed design the first permanent Mars settlement built primarily from local resources. A very early, permanent base can support scientific investigations more cost effectively and safer then a series of round-trip missions, because about half of the mission cost can be saved by eliminating most return spacecraft, fuel manufacture, and consumables. Instead of focusing on how a single technology can be applied, we look at the broad view of all the needed structures and materials to construct an initial base and growing settlement. We concentrate on the materials and architectural design of the first phase of development which will support 12 persons. A preliminary design, the “Hillside Base”, has been completed. We assume that 12 people will deploy, bootstrap, and maintain small, semi-automated refining and manufacturing facilities. Using locally produced fiberglass, metal, ceramics, and simple plastics, they then construct permanent quarters for themselves. This Hillside Base includes living quarters, workshops, greenhouses, maintenance facilities, waste processing, refining, manufacturing, and other areas needed to live and work. After they move into their completed quarters, they continue construction for an additional dozen people, mostly scientists, who arrive about every two and a half years. -
Overview of the ASPIRE Project June 12-16, 2017 - the Hague, NL
14th International Planetary Probes Workshop Overview of the ASPIRE Project June 12-16, 2017 - The Hague, NL. Clara O’Farrell, Ian Clark & Mark Adler Jet Propulsion Laboratory, California Institute of Technology © 2017 California Institute of Technology. Government Sponsorship Acknowledged. ASPIRE Disk-Gap-Band (DGB) Parachute Heritage MSL (2012) MER (2004) • Developed in the 60s & 70s Viking (1974) for Viking – High Altitude Testing – Wind Tunnel Testing – Low Altitude Drop • Successfully used on 5 Mars missions – Leveraged Viking development Viking BLDT Test MER Drop Test MSL Wind Tunnel Test Image credit: mars.nasa.gov June 12-16, 2017 14th International Planetary Probes Workshop 2 jpl.nasa.gov Aerospace in recent DGB designs: Clark & Tanner, IEEE Broadcloth stress Conference Paper 2466 (2017): (per unit length) Broadcloth ultimate load estimated by treating the disk as a pressure vessel: Disk diameter have been eroding jpl.nasa.gov 3 180 Actual Flight Load ASPIRE 160 Parachute Design Load Broadcloth Ultimate Load DGB Heritage & Design Margins Strength margins may 140 f b l 120 • 3 0 1 x , 100 d a o L e 80 t u h c a r 60 a P 40 parachutes well below those achieved in supersonic tests 20 stresses seen in subsonic testing may not bound the 14th International Planetary Probes Workshop -Densityringsail Supersonic0 Decelerators Project saw failures of two 9. 19 12 12 12 S V V V V P S O P M 1 . P ik ik ik ik at pi p ho S m 7 2 2 2 E i i i i h r p e L m m m m D n n n n f it o n M - g g g g in rt i 1 M M M M II A A I I d u x . -
Bethany L. Ehlmann California Institute of Technology 1200 E. California Blvd. MC 150-21 Pasadena, CA 91125 USA Ehlmann@Caltech
Bethany L. Ehlmann California Institute of Technology [email protected] 1200 E. California Blvd. Caltech office: +1 626.395.6720 MC 150-21 JPL office: +1 818.354.2027 Pasadena, CA 91125 USA Fax: +1 626.568.0935 EDUCATION Ph.D., 2010; Sc. M., 2008, Brown University, Geological Sciences (advisor, J. Mustard) M.Sc. by research, 2007, University of Oxford, Geography (Geomorphology; advisor, H. Viles) M.Sc. with distinction, 2005, Univ. of Oxford, Environ. Change & Management (advisor, J. Boardman) A.B. summa cum laude, 2004, Washington University in St. Louis (advisor, R. Arvidson) Majors: Earth & Planetary Sciences, Environmental Studies; Minor: Mathematics International Baccalaureate Diploma, Rickards High School, Tallahassee, Florida, 2000 Additional Training: Nordic/NASA Summer School: Water, Ice and the Origin of Life in the Universe, Iceland, 2009 Vatican Observatory Summer School in Astronomy &Astrophysics, Castel Gandolfo, Italy, 2005 Rainforest to Reef Program: Marine Geology, Coastal Sedimentology, James Cook Univ., Australia, 2004 School for International Training, Development and Conservation Program, Panamá, Sept-Dec 2002 PROFESSIONAL EXPERIENCE Professor of Planetary Science, Division of Geological & Planetary Sciences, California Institute of Technology, Assistant Professor 2011-2017, Professor 2017-present; Associate Director, Keck Institute for Space Studies 2018-present Research Scientist, Jet Propulsion Laboratory, California Institute of Technology, 2011-2020 Lunar Trailblazer, Principal Investigator, 2019-present MaMISS -
Scientific Field Training for Human Planetary
Author's personal copy ARTICLE IN PRESS Planetary and Space Science 58 (2010) 920–930 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Scientific field training for human planetary exploration D.S.S. Lim a,b,n, G.L. Warman c, M.L. Gernhardt d, C.P. McKay a, T. Fong a, M.M. Marinova e, A.F. Davila a,b, D. Andersen b, A.L. Brady f, Z. Cardman g, B. Cowie h, M.D. Delaney i, A.G. Faire´n a,b, A.L. Forrest j, J. Heaton k, B.E. Laval j, R. Arnold d, P. Nuytten k, G. Osinski l, M. Reay k, D. Reid j, D. Schulze-Makuch m, R. Shepard n, G.F. Slater o, D. Williams p a NASA Ames Research Center, Mail-Stop 245-3, Moffett Field, 94035 CA, USA b SETI Institute, 515N. Whisman Road, Mountain View, 94043 CA, USA c ExperiencePoint, 800 West El Camino Real, Ste 180, Mountain View, 94025 CA, USA d NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA e Planetary Science, California Institute of Technology, MC 150-12, Pasadena, CA, USA f Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada g University of North Carolina at Chapel Hill, Department of Marine Sciences, 340 Chapman Hall, CB 3300, Chapel Hill, NC 27599-3300, USA h Applied Geochemistry Group, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada i The Edge Diving Centre, 973 Marine Drive, North Vancouver, B.C., Canada j Department of Civil Engineering, University of British Columbia, Vancouver, B.C., Canada k Nuytco Research, 241A East 1st Street, -
Zlib Home Site
zlib Home Site http://zlib.net/ A Massively Spiffy Yet Delicately Unobtrusive Compression Library (Also Free, Not to Mention Unencumbered by Patents) (Not Related to the Linux zlibc Compressing File-I/O Library) Welcome to the zlib home page, web pages originally created by Greg Roelofs and maintained by Mark Adler . If this page seems suspiciously similar to the PNG Home Page , rest assured that the similarity is completely coincidental. No, really. zlib was written by Jean-loup Gailly (compression) and Mark Adler (decompression). Current release: zlib 1.2.6 January 29, 2012 Version 1.2.6 has many changes over 1.2.5, including these improvements: gzread() can now read a file that is being written concurrently gzgetc() is now a macro for increased speed Added a 'T' option to gzopen() for transparent writing (no compression) Added deflatePending() to return the amount of pending output Allow deflateSetDictionary() and inflateSetDictionary() at any time in raw mode deflatePrime() can now insert bits in the middle of the stream ./configure now creates a configure.log file with all of the results Added a ./configure --solo option to compile zlib with no dependency on any libraries Fixed a problem with large file support macros Fixed a bug in contrib/puff Many portability improvements You can also look at the complete Change Log . Version 1.2.5 fixes bugs in gzseek() and gzeof() that were present in version 1.2.4 (March 2010). All users are encouraged to upgrade immediately. Version 1.2.4 has many changes over 1.2.3, including these improvements: -
Arthur C. Clarke 2001: a Space Odyssey
Volume 33, Issue 2 AIAAAIAA HoustonHouston SectionSection www.aiaa-houston.orgwww.aiaa-houston.org April 2008 Arthur C. Clarke 1917 - 2008 2001: A Space Odyssey - 40 Years Later Yesterday’s Tomorrow Artwork by Jon C. Rogers and Pat Rawlings AIAA Houston Horizons April 2008 Page 1 April 2008 T A B L E O F C O N T E N T S From the Acting Editor 3 HOUSTON Chair’s Corner 4 2001: A Space Odyssey - 40 Years Later: Yesterday’s Tomorrow 5 Horizons is a quarterly publication of the Houston section of the American Institute of Aeronautics and Astronautics. International Space Activities Committee (ISAC) 14 Arthur C. Clarke: A Prophet Vindicated by Gregory Benford 16 Acting Editor: Douglas Yazell [email protected] Book Review (Subject: Ellington Field in Houston) & Staying Informed 18 Assistant Editors: Scholarship & Annual Technical Symposium (ATS 2008) 19 Jon Berndt Dr. Rattaya Yalamanchili Lunch-and-Learn Summary: Mars Rovers by Dr. Mark Adler/JPL 20 Don Kulba Robert Beremand Dinner Meeting Summary: John Frassanito & Associates 21 Lunch & Learn: Sailing the Space Station with Zero-Propellant Guidance 22 AIAA Houston Section Executive Council Membership 23 Chair: Douglas Yazell Inaugural Space Center Lecture Series: Harrison Schmitt of Apollo 17 24 Chair-Elect: Chad Brinkley Past Chair: Dr. Jayant Ramakrishnan Yuri’s Night Houston by AAS, co-sponsored by AIAA Houston Section 26 Secretary: Sarah Shull Constellation Earth, Michel Bonavitacola, AAAF , Toulouse, France 27 Treasurer: Tim Propp Calendar 30 JJ Johnson Sean Carter Cranium Cruncher and a Pre-College Event: Engineer for a Day 31 Vice-Chair, Vice-Chair, Operations Branch Technical Branch Odds and Ends: EAA Houston Chapter 12, James C.