EPSC Abstracts Vol. 6, EPSC-DPS2011-1693-1, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Surface Dynamics of Phobos and Deimos J. Bellerose (1,2), P. Lee (2,3,4) and P. Thomas (5) (1) Carnegie Mellon University Silicon Valley, Moffett Field, USA (
[email protected]), (2) NASA Ames Research Center, (3) Mars Institute, (4) SETI Institute, (5) Cornell University Abstract The equations of motion for surface particles take into account gravitational interactions with Mars, As robotic and human missions to Phobos and Phobos’s rotation, and the variable solar radiation Deimos are planned, surface mechanical and pressure [1, 4]. The dynamics at the surface also dynamical properties have become increasingly integrate surface parameters such as coefficient of important to understand. Their low-gravity restitution and friction [2]. environments make surface interactions and proximity operations planning similar to the situation Regions of surface equilibrium and gravitational of NEA robotic missions, although there are lows are found, and inform studies of the motion of fundamental differences due to interactions with surface point masses. Figure 1 shows a simulation of Mars itself. New surface dynamics tools and particle bounces with a general gravity field and simulation results are presented, compared to the surface coefficient of restitution. To first order, some recent MRO HiRISE images and surface features regions are found to be more easily reached: observed. simulations indicate that particles “fall” toward the poles faster compared to equatorial regions. High- 1. Introduction resolution color images of Phobos show evidence for surface particle transport in directions dictated by There is an interest in exploring the Moons of Mars local topography’s relation to the global pattern of from a scientific and a human exploration perspective.