Mouse Pus1 Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Pus1 Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Pus1 Knockout Project (CRISPR/Cas9) Objective: To create a Pus1 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Pus1 gene (NCBI Reference Sequence: NM_001025561 ; Ensembl: ENSMUSG00000029507 ) is located on Mouse chromosome 5. 7 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000086643). Exon 1~7 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit slow postnatal weight gain, impaired exercise endurance, and alterations in muscle metabolism related to mitochondrial content and oxidative capacity. Exon 1 starts from about 0.08% of the coding region. Exon 1~7 covers 100.0% of the coding region. The size of effective KO region: ~6383 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 Legends Exon of mouse Pus1 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(22.35% 447) | C(25.45% 509) | T(23.75% 475) | G(28.45% 569) Note: The 2000 bp section upstream of start codon is analyzed to determine the GC content. Significant high GC-content regions are found. The gRNA site is selected outside of these high GC-content regions. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(21.7% 434) | C(22.7% 454) | T(32.2% 644) | G(23.4% 468) Note: The 2000 bp section downstream of stop codon is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr5 - 110780320 110782319 2000 browser details YourSeq 65 1105 1265 2000 87.5% chr2 - 6152289 6152547 259 browser details YourSeq 64 30 163 2000 91.1% chr16 + 42042849 42043006 158 browser details YourSeq 59 45 160 2000 75.7% chr4 - 111670295 111670410 116 browser details YourSeq 56 62 170 2000 75.5% chr2 + 124279757 124279864 108 browser details YourSeq 48 1075 1152 2000 76.6% chr11 + 96031566 96031633 68 browser details YourSeq 47 49 166 2000 76.7% chr17 + 13783707 13783822 116 browser details YourSeq 46 45 163 2000 85.8% chr10 + 95463815 95463931 117 browser details YourSeq 44 938 1147 2000 94.0% chr16 + 13628621 13629114 494 browser details YourSeq 42 48 157 2000 87.0% chr12 - 103254822 103254928 107 browser details YourSeq 42 28 94 2000 88.9% chr15 + 3233743 3233839 97 browser details YourSeq 41 1111 1159 2000 91.9% chr17 - 84970863 84970911 49 browser details YourSeq 41 77 147 2000 91.2% chr6 + 137093445 137093514 70 browser details YourSeq 40 1100 1151 2000 88.5% chr7 - 49517134 49517185 52 browser details YourSeq 40 1192 1276 2000 93.5% chr19 + 53633703 53633790 88 browser details YourSeq 40 43 147 2000 87.5% chr16 + 35914486 35914589 104 browser details YourSeq 39 1109 1159 2000 88.3% chr15 - 79544304 79544354 51 browser details YourSeq 39 999 1227 2000 63.3% chr10 - 112362576 112362723 148 browser details YourSeq 39 1120 1163 2000 95.5% chr1 - 59319544 59319589 46 browser details YourSeq 39 45 98 2000 88.9% chr13 + 58665116 58665168 53 Note: The 2000 bp section upstream of start codon is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr5 - 110771935 110773934 2000 browser details YourSeq 316 614 1928 2000 93.2% chr8 - 69609895 70144378 534484 browser details YourSeq 263 602 1896 2000 95.2% chr9 + 53530951 53651973 121023 browser details YourSeq 156 593 758 2000 97.0% chr5 - 137479019 137479184 166 browser details YourSeq 155 593 759 2000 96.5% chr5 - 90190011 90190177 167 browser details YourSeq 155 593 758 2000 97.0% chr16 - 4284326 4284492 167 browser details YourSeq 155 592 758 2000 96.5% chr10 - 71317150 71317316 167 browser details YourSeq 154 592 758 2000 96.5% chr5 - 107948647 107948835 189 browser details YourSeq 154 1589 1935 2000 89.6% chr9 + 73091051 73091637 587 browser details YourSeq 153 593 758 2000 96.4% chr19 - 24840625 24840792 168 browser details YourSeq 153 594 759 2000 96.4% chr2 + 11605492 11605658 167 browser details YourSeq 153 1442 1923 2000 85.3% chr10 + 66926456 66926867 412 browser details YourSeq 152 593 758 2000 96.4% chr19 - 23074436 23074610 175 browser details YourSeq 152 598 759 2000 97.0% chr17 + 25929182 25929343 162 browser details YourSeq 152 592 758 2000 94.0% chr10 + 11393009 11393173 165 browser details YourSeq 151 598 758 2000 96.9% chr17 - 3192180 3192340 161 browser details YourSeq 151 603 1088 2000 93.2% chr11 - 3173327 3173955 629 browser details YourSeq 150 593 759 2000 95.3% chr9 + 110317110 110317661 552 browser details YourSeq 149 612 1088 2000 84.9% chrX - 103417603 103417825 223 browser details YourSeq 149 593 757 2000 95.8% chr2 - 131806140 131806342 203 Note: The 2000 bp section downstream of stop codon is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Pus1 pseudouridine synthase 1 [ Mus musculus (house mouse) ] Gene ID: 56361, updated on 10-Oct-2019 Gene summary Official Symbol Pus1 provided by MGI Official Full Name pseudouridine synthase 1 provided by MGI Primary source MGI:MGI:1929237 See related Ensembl:ENSMUSG00000029507 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as MPUS1; mPus1p; A730013B20Rik Expression Ubiquitous expression in large intestine adult (RPKM 13.1), liver E14 (RPKM 13.0) and 28 other tissues See more Orthologs human all Genomic context Location: 5; 5 F See Pus1 in Genome Data Viewer Exon count: 7 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 5 NC_000071.6 (110773667..110780649, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 5 NC_000071.5 (111202686..111209634, complement) Chromosome 5 - NC_000071.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 7 transcripts Gene: Pus1 ENSMUSG00000029507 Description pseudouridine synthase 1 [Source:MGI Symbol;Acc:MGI:1929237] Gene Synonyms A730013B20Rik, MPUS1, mPus1p Location Chromosome 5: 110,773,667-110,780,659 reverse strand. GRCm38:CM000998.2 About this gene This gene has 7 transcripts (splice variants), 201 orthologues, 2 paralogues, is a member of 1 Ensembl protein family and is associated with 6 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Pus1-203 ENSMUST00000086643.11 1868 441aa ENSMUSP00000083844.5 Protein coding CCDS19530 H7BX59 TSL:1 GENCODE basic APPRIS P4 Pus1-202 ENSMUST00000031483.14 1814 423aa ENSMUSP00000031483.8 Protein coding CCDS19531 Q9WU56 TSL:1 GENCODE basic APPRIS ALT2 Pus1-201 ENSMUST00000031481.12 1563 393aa ENSMUSP00000031481.6 Protein coding CCDS39212 Q9WU56 TSL:1 GENCODE basic APPRIS ALT2 Pus1-207 ENSMUST00000170468.7 1510 393aa ENSMUSP00000130814.1 Protein coding CCDS39212 Q9WU56 TSL:5 GENCODE basic APPRIS ALT2 Pus1-204 ENSMUST00000112426.7 1389 347aa ENSMUSP00000108045.1 Protein coding CCDS84929 Q9WU56 TSL:1 GENCODE basic Pus1-205 ENSMUST00000136483.7 701 147aa ENSMUSP00000115143.1 Protein coding - D3YWU8 CDS 3' incomplete TSL:3 Pus1-206 ENSMUST00000149208.1 527 162aa ENSMUSP00000115468.1 Protein coding - D3Z092 CDS 3' incomplete TSL:3 Page 7 of 9 https://www.alphaknockout.com 26.99 kb Forward strand 110.77Mb 110.78Mb 110.79Mb Genes Gm15559-201 >lncRNA (Comprehensive set... Contigs AC161348.2 > Genes (Comprehensive set... < Ep400-203protein coding < Pus1-201protein coding < Ulk1-201protein coding < Ep400-201protein coding < Pus1-203protein coding < Ulk1-202nonsense mediated decay < Ep400-204protein coding < Pus1-202protein coding < Ulk1-207nonsense mediated decay < Ep400-210protein coding < Pus1-204protein coding < Ulk1-209retained intron < Ep400-202protein coding < Pus1-207protein coding < Ulk1-211protein coding < Ep400-211lncRNA < Pus1-205protein coding
Recommended publications
  • Pseudouridine Synthase 1: a Site-Specific Synthase Without Strict Sequence Recognition Requirements Bryan S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Published online 18 November 2011 Nucleic Acids Research, 2012, Vol. 40, No. 5 2107–2118 doi:10.1093/nar/gkr1017 Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements Bryan S. Sibert and Jeffrey R. Patton* Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208 USA Received May 20, 2011; Revised October 19, 2011; Accepted October 22, 2011 ABSTRACT rRNA and snRNA and requires Dyskerin or its homologs Pseudouridine synthase 1 (Pus1p) is an unusual (Cbf5p in yeast for example) and RNP cofactors [most site-specific modification enzyme in that it can often H/ACA small nucleolar ribonucleoprotein particles modify a number of positions in tRNAs and can rec- (snoRNPs)] that enable one enzyme to recognize many ognize several other types of RNA. No consensus different sites for modification on different substrates recognition sequence or structure has been identi- (17–25). The other pathway for É formation employs fied for Pus1p. Human Pus1p was used to determine site-specific É synthases that require no cofactors to rec- which structural or sequence elements of human ognize and modify the RNA substrate. A number of en- tRNASer are necessary for pseudouridine ()) forma- zymes have been identified in this pathway and are grouped in six families that all share a common basic tion at position 28 in the anticodon stem-loop (ASL). Ser structure (4). It is safe to say the cofactor ‘guided’ pathway Some point mutations in the ASL stem of tRNA has received a great deal of attention because of its simi- had significant effects on the levels of modification larity to aspects of RNA editing, but the site-specific and compensatory mutation, to reform the base pseudouridine synthases accomplish the same task, on pair, restored a wild-type level of ) formation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Dual Nature of Pseudouridylation in U2 Snrna: Pus1p-Dependent and Pus1p-Independent Activities in Yeasts and Higher Eukaryotes
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Deryusheva and Gall Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p- independent activities in yeasts and higher eukaryotes Svetlana Deryusheva and Joseph G. Gall* Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA * Corresponding author: E-mail [email protected] Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA Tel.: 1-410-246-3017; Fax: 1-410-243-6311 Short running title: Dual mechanism of positioning Ψ43 in U2 snRNA Keywords: modification guide RNA, pseudouridine, Pus1p, U2 snRNA 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Deryusheva and Gall ABSTRACT The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved posttranscriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast Saccharomyces cerevisiae and mouse. Furthermore, in S. cerevisiae Pus1p is the only pseudouridine synthase for this position. Using an in vivo yeast cell system we tested enzymatic activity of Pus1p from the fission yeast Schizosaccharomyces pombe, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the frog Xenopus tropicalis. We demonstrated that Pus1p from C. elegans has no enzymatic activity on U2 snRNA when expressed in yeast cells, whereas in similar experiments, position 44 in yeast U2 snRNA (equivalent to position 43 in vertebrates) is a genuine substrate for Pus1p from S.
    [Show full text]
  • Pseudouridine Synthases Modify Human Pre-Mrna Co-Transcriptionally and Affect Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.29.273565; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect splicing Authors: Nicole M. Martinez1, Amanda Su1, Julia K. Nussbacher2,3,4, Margaret C. Burns2,3,4, Cassandra Schaening5, Shashank Sathe2,3,4, Gene W. Yeo2,3,4* and Wendy V. Gilbert1* Authors and order TBD with final revision. Affiliations: 1Yale School of Medicine, Department of Molecular Biophysics & Biochemistry, New Haven, CT 06520, USA. 2Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA. 3Stem Cell Program, University of California, San Diego, La Jolla, CA 92037, USA. 4Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA. 5Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. *Correspondence to: [email protected], [email protected] Abstract: Eukaryotic messenger RNAs are extensively decorated with modified nucleotides and the resulting epitranscriptome plays important regulatory roles in cells 1. Pseudouridine (Ψ) is a modified nucleotide that is prevalent in human mRNAs and can be dynamically regulated 2–5. However, it is unclear when in their life cycle RNAs become pseudouridylated and what the endogenous functions of mRNA pseudouridylation are. To determine if pseudouridine is added co-transcriptionally, we conducted pseudouridine profiling 2 on chromatin-associated RNA to reveal thousands of intronic pseudouridines in nascent pre-mRNA at locations that are significantly associated with alternatively spliced exons, enriched near splice sites, and overlap hundreds of binding sites for regulatory RNA binding proteins.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Charging the Code — Trna Modification Complexes
    Available online at www.sciencedirect.com ScienceDirect Charging the code — tRNA modification complexes 1,2,4 1,3,4 Roscisław Krutyhołowa , Karol Zakrzewski and 1 Sebastian Glatt All types of cellular RNAs are post-transcriptionally modified, of RNA bases in and around the anticodon impacts on constituting the so called ‘epitranscriptome’. In particular, their intrinsic geometry and canonical Watson–Crick base tRNAs and their anticodon stem loops represent major pair interactions between codons and anticodons [5–7]. modification hotspots. The attachment of small chemical These alterations strongly influence the dynamics of groups at the heart of the ribosomal decoding machinery can tRNA selection at the ribosomal A-site [8] and subse- directly affect translational rates, reading frame maintenance, quently affect the local elongation speed, co-translational co-translational folding dynamics and overall proteome folding dynamics [9], proteome stability and cell survival stability. The variety of tRNA modification patterns is driven by [10]. tRNA modifications were initially thought to be the activity of specialized tRNA modifiers and large routinely and uniformly added to their respective tRNA modification complexes. Notably, the absence or dysfunction molecules. To date, it is becoming increasingly clear that of these cellular machines is correlated with several human most of them are dynamically regulated in response to pathophysiologies. In this review, we aim to highlight the most environmental cues [11,12] and an intense cross talk recent scientific progress and summarize currently available between various modifications and their pathways structural information of the most prominent eukaryotic tRNA emerges [13]. Here, we aim to provide a comprehensive modifiers. summary of the respective modification enzymes that produce this plethora of posttranscriptional modifications Addresses patterns.
    [Show full text]
  • (PUS1) Causes Mitochondrial Myopathy And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Am. J. Hum. Genet. 74:1303–1308, 2004 Report Missense Mutation in Pseudouridine Synthase 1 (PUS1) Causes Mitochondrial Myopathy and Sideroblastic Anemia (MLASA) Yelena Bykhovskaya,1,* Kari Casas,1,* Emebet Mengesha,1 Aida Inbal,2 and Nathan Fischel-Ghodsian1 1Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, and Medical Genetics Birth Defects Center, Cedars-Sinai Medical Center, Los Angeles; and 2Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Israel Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphory- lation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known poly- morphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain.
    [Show full text]
  • Functional Dependency Analysis Identifies Potential Druggable
    cancers Article Functional Dependency Analysis Identifies Potential Druggable Targets in Acute Myeloid Leukemia 1, 1, 2 3 Yujia Zhou y , Gregory P. Takacs y , Jatinder K. Lamba , Christopher Vulpe and Christopher R. Cogle 1,* 1 Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610-0278, USA; yzhou1996@ufl.edu (Y.Z.); gtakacs@ufl.edu (G.P.T.) 2 Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610-0278, USA; [email protected]fl.edu 3 Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0278, USA; cvulpe@ufl.edu * Correspondence: [email protected]fl.edu; Tel.: +1-(352)-273-7493; Fax: +1-(352)-273-5006 Authors contributed equally. y Received: 3 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Simple Summary: New drugs are needed for treating acute myeloid leukemia (AML). We analyzed data from genome-edited leukemia cells to identify druggable targets. These targets were necessary for AML cell survival and had favorable binding sites for drug development. Two lists of genes are provided for target validation, drug discovery, and drug development. The deKO list contains gene-targets with existing compounds in development. The disKO list contains gene-targets without existing compounds yet and represent novel targets for drug discovery. Abstract: Refractory disease is a major challenge in treating patients with acute myeloid leukemia (AML). Whereas the armamentarium has expanded in the past few years for treating AML, long-term survival outcomes have yet to be proven. To further expand the arsenal for treating AML, we searched for druggable gene targets in AML by analyzing screening data from a lentiviral-based genome-wide pooled CRISPR-Cas9 library and gene knockout (KO) dependency scores in 15 AML cell lines (HEL, MV411, OCIAML2, THP1, NOMO1, EOL1, KASUMI1, NB4, OCIAML3, MOLM13, TF1, U937, F36P, AML193, P31FUJ).
    [Show full text]
  • Pseudouridine Synthase 1 Deficient Mice, a Model for Mitochondrial Myopathy with Sideroblastic Anemia, Exhibit Muscle Morphology and Physiology Alterations
    www.nature.com/scientificreports OPEN Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Received: 27 October 2015 Accepted: 28 April 2016 Sideroblastic Anemia, exhibit Published: 20 May 2016 muscle morphology and physiology alterations Joshua E. Mangum1, Justin P. Hardee1, Dennis K. Fix1, Melissa J. Puppa1, Johnathon Elkes2, Diego Altomare3, Yelena Bykhovskaya4, Dean R. Campagna5, Paul J. Schmidt5, Anoop K. Sendamarai5, Hart G. W. Lidov5, Shayne C. Barlow6, Nathan Fischel-Ghodsian4, Mark D. Fleming5, James A. Carson1 & Jeffrey R. Patton2 Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice.
    [Show full text]
  • Transcriptomic and Proteomic Landscape of Mitochondrial
    TOOLS AND RESOURCES Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals Inge Ku¨ hl1,2†*, Maria Miranda1†, Ilian Atanassov3, Irina Kuznetsova4,5, Yvonne Hinze3, Arnaud Mourier6, Aleksandra Filipovska4,5, Nils-Go¨ ran Larsson1,7* 1Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany; 2Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC) UMR9198, CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, Gif- sur-Yvette, France; 3Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany; 4Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia; 5School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 6The Centre National de la Recherche Scientifique, Institut de Biochimie et Ge´ne´tique Cellulaires, Universite´ de Bordeaux, Bordeaux, France; 7Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden Abstract Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative *For correspondence: analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five [email protected] knockout mouse strains deficient in essential factors required for mitochondrial DNA gene (IKu¨ ); expression, leading to OXPHOS dysfunction. Moreover,
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]