La Órbita Del Satélite Libertad 1

Total Page:16

File Type:pdf, Size:1020Kb

La Órbita Del Satélite Libertad 1 ASTRONOMÍA LA ORBITA´ DEL SATELITE´ LIBERTAD 1 ´ ´ LALALAORBITA´ ORBITA´ DEL DEL DEL SAT SAT SATELITE´ELITE´ ELITE LIBERTAD LIBERTAD LIBERTAD 1 1 1 LATHE ÓRBITA ORBIT OF DEL THE SATÉLITE LIBERTAD 1 LIBERTAD SATELLITE 1 THETHE ORBIT ORBIT OF OF THE THE LIBERTAD LIBERTAD 1 SATELLITE 1 SATELLITE THE ORBIT OF THE LIBERTAD 1 SATELLITE José Gregoriopor Portilla1 Jos´eGregorioporpor Portilla1 por Jos´eGregorioJos´eGregorio Portilla Portilla1 1 Jos´eGregorioResumen Portilla1 Resumen ResumenResumen J. G. Portilla. La ´orbita del sat´elite Libertad 1. Rev. ResumenAcad. Colomb. Cienc.36(141):491-500, 2012. ISSN:0370-3908. Portilla, J.G. La órbita del satélite Libertad 1. Rev. Acad. Colomb. Cienc. 36 (141): 491-500, 2012. ISSN: 0370-3908. J. G. Portilla. La ´orbita del sat´elite Libertad 1. Rev. Acad. Colomb. Cienc.36(141):491-500, 2012. ISSN:0370-3908. J. G. Portilla. Inicialmente hacemos unaLa ´o descripci´onrbita del sa det´eli late g´enesisLiberta deld 1. saRt´eliteev. A Libertadcad. Colo 1,m unb. C CubeSatienc.36 de(1 tipo41): 1U491- adquirido500, 2012. yI adaptadSSN:037o0- por3908 la. J. G. Portilla. La ´orbita del sat´elite Libertad 1. Rev. Acad. Colomb. Cienc.36(141):491-500, 2012. ISSN:0370-3908. UniversidadInicialmente Sergio Arboleda hacemos el una cual descripci´on se constituy´oen de la g´enesis el primero del sat´elite objeto Libertad en orbitar 1, un la CubeSat Tierra por de tipo parte 1U de adquirido una instituci´o y adaptadn colombiana.o por la PosteriormenteUniversidadInicialmente se realiza Sergio hacemos Arboleda un an´alisis una el descripci´oncual de susse constituy´oen elementos de la g´enesis orb el priitalesmero del registradossa objetot´elite en Libertad orbitar por ella 1, NORAD Tierra un CubeSat por y parte se de calculan de tipo una 1U instituci´o las adquirido tasasn de colombiana. y dec adaptadaimientoo por la Inicialmente hacemos una descripci´on de la g´enesis del sat´elite Libertad 1, un CubeSat de tipo 1U adquirido y adaptado por la del semiejeUniversidadPosteriormente mayor Sergiocausado se realiza Arboleda por un rozamiento an´alisis el cual de se atmosf´erico susconstituy´oen elementos en orb el un priitalesperiodomero registrados objeto de cinco en por orbitar a˜nos. el NORAD laA Tierrapartir y se depor calculan estos parte valoreslas de tasas una procedemos instituci´o de decaimienton colombiana.a una UniversidadPosteriormente Sergio Arboleda se realiza el cual un an´alisis se constituy´oen de sus elementos el primero orb objetoitales registradosen orbitar la por Tierra el NORAD por parte y de se unacalculan instituci´o las tasasn colombiana. de decaimiento estimaci´ondel semieje de la densidad mayor causado promedio por de rozamiento la atm´osfera atmosf´erico terrestre en aun unaperiodo altura de cercana cinco a˜nos. a los A 720 partir km. de estos valores procedemos a una Posteriormentedelestimaci´on semieje se demayor realiza la densidad causado un an´alisis promedio por de rozamiento susde la elementos atm´osfera atmosf´erico orb terresitalestre en a registrados un unaperiodo altura cercanapor de cinco el NORAD a los a˜nos. 720 ykm.A se partir calculan de estos las tasas valores de procedemos decaimiento a una del semiejeestimaci´on mayor de causado la densidad por rozamiento promedio de atmosf´erico la atm´osfera en terres un periodotre a una de alturacinco a˜nos. cercana A a partir los 720 de km. estos valores procedemos a una Palabras clave. Sat´elite artificial, atm´osfera terrestre, rozamiento atmosf´erico. estimaci´onPalabras de la densidad clave. promedio Sat´elite artificial, de la atm´osfera atm´osfera terres terrestre,tre a rozamiento una altura atmosf´erico. cercana a los 720 km. Palabras clave. Sat´elite artificial, atm´osfera terrestre, rozamiento atmosf´erico. Palabras clave. Sat´elite artificial, atm´osfera terrestre, rozamientoAbstractAbstract atmosf´erico. We begin with a description of the genesis of the Libertad 1 satellite,Abstract a type 1U CubeSat purchased and then fitted by the Sergio We begin with a description of the genesis of the LibertadAbstract 1 satellite, a type 1U CubeSat purchased and then fitted by the Sergio ArboledaArboleda University. University. This satellite This satellite was wasthe thefirst first object object to toorbit orbit the the Earth Earth by by initiative initiative of a a colombian colombian institution. institution. We We made made an an We begin with a description of the genesis of the Libertad 1 satellite, a type 1U CubeSat purchased and then fitted by the Sergio analysisanalysis of the orbital of the orbital elements elements determined determined by NORAD by NORAD and and the then wen we calculate calculate decay decay rates rates of the the semimajor semimajor axis axis due due to toatmosp atmosphericheric WeArboleda begin with University. a description This of satellite the genesis was of the the first Libertad object 1 to satellite, orbit the a type Earth 1U byCubeSat initiative purchased of a colombian and then institution. fitted by the We Sergio made an drag withindrag anwithin interval an interval of five of years. five years. With With these these values values we we cal calculatedculated average average atmospheric atmospheric density density at at 720 720 km km altitude. altitude. Arboledaanalysis University. of the orbital This satellite elements was determined the first by object NORAD to orbit and the then Earth we calculate by initiative decay of rates a colombian of the semimajor institution. axisdue We tomade atmosp an heric analysis of the orbital elements determined by NORAD and then we calculate decay rates of the semimajor axis due to atmospheric dragKey within words an interval. Artificial of fivesatellite, years. Earth With atmosphere, these values atmospheric we calculated drag. average atmospheric density at 720 km altitude. dragKey within words an interval. Artificial of five satellite, years. Earth With atmosphere, these values atmosphericwe calculated drag average. atmospheric density at 720 km altitude. Key words. Artificial satellite, Earth atmosphere, atmospheric drag. Key words . Artificial satellite, Earth atmosphere, atmospheric dragprivada). se ve compelido a utilizar tecnolog´ıaaeroespacial 1. Introducci´on privada)debe adquirir se ve compelido necesariamente a utilizar los servicios tecnolog´ıaaeroespacial de industrias 1. Introducci´on debeexistentesprivada) adquirir en se aquellos necesariamente ve compelido pa´ıses que a los utilizar los servicios ofrecen. tecnolog´ıaaeroespacial de De industrias hecho, 1. Introducci´onEl sat´elite Libertad 1 fue puesto en ´orbita terrestre elprivada)existentesla grandebese mayor´ıade en adquirir ve aquellos compelido los necesariamente pa´ıses usuarios, a utilizar que con los tecnolog´ıaaeroespacial independencia los ofrecen. servicios De de hecho, las industrias 1.El Introducci´on sat´elited´ıa 17 deLibertad abril de 1 2007 fue puesto por un misilen ´orbita bal´ıstico terrestre modificado el debelanaciones granexistentes adquirir mayor´ıade a las que necesariamente en pertenecen, aquellos los usuarios, pa´ıses han losde con serviciosque hacer independencia los lo ofrecen.mismo: de industrias si de al- De las hecho, existentesnacionesguien desea a en las hacerse aquellos que pertenecen, con pa´ıses un sat´elite que han para losde hacer efectosofrecen. lo de mismo: utilizarlo De hecho, si al- d´ıa 17lanzado deEl abril sat´elite desde de Libertad2007 el cosm´odromo por 1 un fue misil puesto de bal´ısticoBaikonour. en ´orbita modificado Con terrestre forma el la gran mayor´ıade los usuarios, con independencia de las laguiencon gran alg´un desea mayor´ıade prop´osito, hacerse conlos debe usuarios, un pagar sat´elite por con para ´el; independencia adicionalmente, efectos de utilizarlo de ha las lanzadoEld´ıa sat´elitede desde 17 cubo, de Libertad el conabril cosm´odromo cada de 1 2007 ladofue puesto depor de apenas Baikonour.un en misil ´orbita 10 bal´ısticocm,terrestre Con el sat´elite forma modificado el se naciones a las que pertenecen, han de hacer lo mismo: si al- constituy´oen el primer objeto en orbitar la Tierra pornacionesconde alg´un adquirir a prop´osito,las el que servicio pertenecen, debe de un pagar proveedor han por de ´el;hacer de adicionalmente, un lo cohete mismo: para si al- ha ded´ıa cubo, 17lanzado de con abril desde cada de 2007 lado el cosm´odromo por de apenas un misil de 10 bal´ıstico Baikonour. cm, el modificado sat´elite Con se forma guien desea hacerse con un sat´elite para efectos de utilizarlo iniciativa de una instituci´on colombiana. guiendeefectos adquirir desea de que hacerse elservicio coloque con dicho de un un sat´elite sat´elite proveedor para en la efectos ´orbita de un apropiada. de cohete utilizarlo para constituy´oenlanzadode desdecubo, el el con primer cosm´odromo cada objeto lado de enapenas Baikonour. orbitar 10 la cm, ConTierra el forma sat´elite por se con alg´un prop´osito, debe pagar por ´el; adicionalmente, ha conefectos alg´un de prop´osito,que coloque debe dicho pagar sat´elite por en´el; la adicionalmente, ´orbita apropiada. ha iniciativade cubo,constituy´oen de con una cada instituci´on ellado primer de colombiana. apenas objeto 10 en cm, orbitar el sat´elite la Tierra se por de adquirir el servicio de un proveedor de un cohete para Transcurrido medio siglo despu´es de la colocaci´on delde adquirirEn el pa´ısse el servicio ha venido de un hablando proveedor de dela compra un cohete de un para constituy´oeniniciativa deel primeruna instituci´on objeto en colombiana. orbitar la Tierra por efectos de que coloque dicho sat´elite en la ´orbita apropiada. iniciativaSputnik de una I, Colombia instituci´on aun colombiana. carece casi que por completo deefectossat´elite de de que comunicaciones coloque dicho y, en sat´elite el presente, en la de´orbita un sat´elite apropiada. de Transcurridoinvestigaci´on medio e industria siglo despu´es astron´autica de la en colocaci´on los t´erminos del en observaci´onEn el pa´ısse terrestre, ha venido aparatos hablando estos cuyo de costo la compra se cuenta de un Sputnikque I,Transcurrido seColombia entiende aun en medio la carece actualidad.
Recommended publications
  • Orbital Lifetime Predictions
    Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years.
    [Show full text]
  • Commercial Space Transportation Year in Review
    2007 YEAR IN REVIEW INTRODUCTION INTRODUCTION The Commercial Space Transportation: 2007 upon liftoff, destroying the vehicle and the Year in Review summarizes U.S. and interna- satellite. tional launch activities for calendar year 2007 and provides a historical look at the past five Overall, 23 commercial orbital launches years of commercial launch activity. occurred worldwide in 2007, representing 34 percent of the 68 total launches for the year. The Federal Aviation Administration’s This marked an increase over 2006, which Office of Commercial Space Transportation saw 21 commercial orbital launches (FAA/AST) licensed four commercial orbital worldwide. launches in 2007. Three of these licensed launches were successful, while one resulted Russia conducted 12 commercial launch in a launch failure. campaigns in 2007, bringing its international commercial launch market share to 52 per- Of the four orbital licensed launches, cent for the year, a record high for Russia. three used a U.S.-built vehicle: the United Europe attained a 26 percent market share, Launch Alliance Delta II operated by Boeing conducting six commercial Ariane 5 launches. Launch Services. Two of the Delta II vehi- FAA/AST-licensed orbital launch activity cles, in the 7420-10 configuration, deployed accounted for 17 percent of the worldwide the first two Cosmo-Skymed remote sensing commercial launch market in 2007. India satellites for the Italian government. The conducted its first ever commercial launch, third, a Delta II 7925-10, launched the for four percent market share. Of the 68 WorldView 1 commercial remote sensing worldwide orbital launches, there were three satellite for DigitalGlobe. launch failures, including one non-commer- cial launch and two commercial launches.
    [Show full text]
  • Istnanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning
    ISTNanosat-1 Quality Assurance, Risk Management and Assembly, Integration and Verification Planning Pedro Filipe Rodrigues Coelho Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Examination Committee Chairperson: Prof. João Miranda Lemos Supervisor: Prof. Rui M. Rocha Co-Supervisor: Prof. Moisés S. Piedade Members of the Committee: Prof. Agostinho A. da Fonseca May 2016 ii Acknowledgments To Professor Rui Rocha and Professor Moisés Piedade, I have to thank the opportunity to work in the ISTNanoSat-1 Project, the guidance throughout the project and the most required pushes for this project conclusion. I would like to thank Laurent Marchand and Nicolas Saillen for the support, drive and belief. It would never have been possible to complete this work without their support and flexibility as well as their drive in my professional endeavors. To all the friendships university brought and endured in my life, that shared the worst and best of university, the late nights of work and study, the challenging exchange of ideas and ideals and all the growing into adulthood. To all my friends in ESA/ESTEC, for filling the best possible work experience with the best personnel environment. Their joy and enthusiasm in work and life were and will always be an inspiration in my life. A lei, bella Annalisa coppia di ballo, per essere la musica e la giola in tutti i76955+ momenti… À minha família, Mãe, Pai e Irmã, pelo amor incondicional, paciência e crença sem limites. Não tenho como retribuir o esforço incansável, todo o carinho e a educação modelar, senão agarrar o futuro pelo qual tanto lutaram comigo.
    [Show full text]
  • Review of Space Activities in South America.Pdf
    Journal of Aeronautical History Revised 11 September 2018 Paper 2018/08 Review of Space Activities in South America Bruno Victorino Sarli, Space Generation Advisory Council, Brazil Marco Antonio Cabero Zabalaga, Space Generation Advisory Council, Bolivia Alejandro Lopez Telgie, Universidad de Concepción, Facultad de Ingeniería, Departamento de Ingeniería Mecánica, Chile Josué Cardoso dos Santos, São Paulo State University (FEG-UNESP), Brazil Brehme Dnapoli Reis de Mesquita, Federal Institute of Education, Science and Technology of Maranhão, Açailândia Campus, Brazil Avid Roman-Gonzalez, Space Generation Advisory Council, Peru Oscar Ojeda, Space Generation Advisory Council, Colombia Natalia Indira Vargas Cuentas, Space Generation Advisory Council, Bolivia Andrés Aguilar, Universidad Tecnológica Nacional Facultad Regional Delta, Argentina ABSTRACT This paper addresses the past and current efforts of the South American region in space. Space activities in the region date back to 1961; since then, South American countries have achieved a relatively modest capability through their national programs, and some international collaboration, with space activities in the region led primarily by the Brazilian and Argentinian space programs. In an era where missions explore the solar system and beyond, this paper focus on the participation of a region that is still in the early stages of its space technology development, yet has a considerable amount to offer in terms of material, specialized personnel, launch sites, and energy. In summary, this work presents a historical review of the main achievements in the South American region, and through analysis of past and present efforts, aims to project a trend for the future of space in South America. The paper also sets out current efforts of regional integration such as the South American Space Agency proposal.
    [Show full text]
  • Financial Operational Losses in Space Launch
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By TOM ROBERT BOONE, IV Norman, Oklahoma 2017 FINANCIAL OPERATIONAL LOSSES IN SPACE LAUNCH A DISSERTATION APPROVED FOR THE SCHOOL OF AEROSPACE AND MECHANICAL ENGINEERING BY Dr. David Miller, Chair Dr. Alfred Striz Dr. Peter Attar Dr. Zahed Siddique Dr. Mukremin Kilic c Copyright by TOM ROBERT BOONE, IV 2017 All rights reserved. \For which of you, intending to build a tower, sitteth not down first, and counteth the cost, whether he have sufficient to finish it?" Luke 14:28, KJV Contents 1 Introduction1 1.1 Overview of Operational Losses...................2 1.2 Structure of Dissertation.......................4 2 Literature Review9 3 Payload Trends 17 4 Launch Vehicle Trends 28 5 Capability of Launch Vehicles 40 6 Wastage of Launch Vehicle Capacity 49 7 Optimal Usage of Launch Vehicles 59 8 Optimal Arrangement of Payloads 75 9 Risk of Multiple Payload Launches 95 10 Conclusions 101 10.1 Review of Dissertation........................ 101 10.2 Future Work.............................. 106 Bibliography 108 A Payload Database 114 B Launch Vehicle Database 157 iv List of Figures 3.1 Payloads By Orbit, 2000-2013.................... 20 3.2 Payload Mass By Orbit, 2000-2013................. 21 3.3 Number of Payloads of Mass, 2000-2013.............. 21 3.4 Total Mass of Payloads in kg by Individual Mass, 2000-2013... 22 3.5 Number of LEO Payloads of Mass, 2000-2013........... 22 3.6 Number of GEO Payloads of Mass, 2000-2013..........
    [Show full text]
  • Satellites Added and Deleted for July 1, 2010 Release This Version of the Database Includes Satellites Launched Through July 1, 2010
    Satellites Added and Deleted for July 1, 2010 release This version of the database includes satellites launched through July 1, 2010. The changes to this version of the database include: • The addition of 18 satellites • The deletion of 4 satellites • The addition of and corrections to some satellite data Satellites Added Cryosat-2 – 2010-013A Kobalt-M [Cosmos 2462] – 2010-014A X-37B OTV-1 [USA 212) – 2010-015A SES 1 – 2010-016A Parus-99 [Cosmos 2463] – 2010-017A Astra 3B – 2010-021A ComsatBw-2 – 2010-021B Navstar GPS 62 [USA 213] – 2010-022A SERVIS 2 – 2010-023A Compass G-3 – 2010-024A Arabsat 5B – 2010-025A Shijian-12 – 2010-027A Picard – 2010-028A PRISMA – 2010-028B TanDEM-X – 2010-030A Ofeq 9 – 2010-031A COMS-1 – 2010-032A Arabsat 5A – 2010-032B Satellites Removed LES-9 – 1976-023B Galaxy-9 -- 1996-033A SERVIS-1 – 2003-050A Galaxy-15 – 2005-041A Satellites Added and Deleted for April 1, 2010 release This version of the database includes satellites launched through April 1, 2010. The changes to this version of the database include: • The addition of 12 satellites • The deletion of 10 satellites • The addition of and corrections to some satellite data Satellites Added Beidou 3 – 2010-001A Raduga 1M – 2010-002A SDO (Solar Dynamics Observatory) – 2010-005A Intelsat 16 – 2010-006A Glonass 731 [Cosmos 2459] – 2010-007A Glonass 735 [Cosmos 2461] – 2010-007B Glonass 732 [Cosmos 2460] – 2010-007C GOES-15 [GOES-P] – 2010-008A Yaogan 9A – 2010-009A Yaogan 9B – 2010-009B Yaogan 9C – 2010-009C Echostar 14 – 2010-010A Satellites Removed Thaicom-1A – 1993-078B Intelsat-4 – 1995-040A Eutelsat W2 – 1998-056A Raduga 1-5 [Cosmos 2372] – 2000-049A IceSat – 2003-002A Raduga 1-7 [Cosmos 2406] – 2004-010A Glonass 713 [Cosmos 2418) – 2005-050B Yaogan-1 – 2006-015A CAPE-1 – 2007-012P Beidou-2 [Compass G2] – 2009-018A Satellites Added and Deleted for January 1, 2010 release This version of the database includes satellites launched through January 1, 2010.
    [Show full text]
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • A Statistical and Personal History of University-Class Satellites
    SSC18-WKVIII-03 Reliving 24 Years in the Next 12 Minutes: A Statistical and Personal History of University-Class Satellites Michael Swartwout Saint Louis University 3450 Lindell Blvd, St. Louis, MO 63103; 314-977-8214 [email protected] ABSTRACT In 2018, university-class satellites -- spacecraft built by university students for the express purpose of student training -- are widely accepted as a means to recruit undergraduate students into the space workforce, train them effectively before graduation and retain them in the field after graduation. Hundreds of undergraduates at dozens of schools around the world have directly contributed to missions that operated on-orbit. The spacecraft themselves are capable of performance research-grade science or demonstrate new enabling technologies. This was not always the case. For the first forty years of spaceflight, there were exceedingly few university-class missions; those that flew were expensive, marginally-performing and had modest success rates. What changed? Why are university-class missions now commonplace? And, with respect to on-orbit success, are they as good (or as bad) as rumor and hearsay make them out to be? In this paper and all-too-brief talk, the history of university-class spacecraft will be discussed, with an emphasis on the types of missions and their success rates. Beginning in 1994 (the author's first time attending this conference, as a wide-eyed student) and reaching through to 2018 (the author's 21st, now as a world-weary professor) a statistical and anecdotal review of
    [Show full text]
  • Presentación De Powerpoint
    Libertad 1 y 2 Proyectos aeroespaciales en Colombia Por : Ing. Raúl Joya Olarte Director Observatorio Astronómico Universidad Sergio Arboleda Miembro de la IAA Experiencias en actividades espaciales 2004-2016 • Desarrollo de satélites : Escuelas de ciencias exactas e ingenierías, matemáticas y observatorio astronómico. • Desarrollo de aspectos jurídicos espaciales: Escuela de derecho • Impactos Económico social: Escuela de economía El Libertad 1 • Dimensión: 10 cm x 10 cm x 10 cm • Orbita: helio sincrónica - polar • Fecha lanzamiento: 17 abril de 2007 • Peso: 1 kilogramo • Misión: obtención de telemetría • Reingreso: Expectativa: 2018 • Estado de operación: inactivo Componentes del Módulo de control Satélite Libertad 1 Sistema de alimentación y potencia Sistema de comunicaciones Baterías Antenas Estructura Cara de antenas Cubesat Libertad 1 Lista de carga Cohete Dnepr - Baikonur -Abril 17 de 2007 Cohete Carga País Misión Operador Propietario Platafoma Masa Órbita Remote Se NPO Dnepr 1 Egyptsat 1 Egypt NARSSS MS-1TK 100 kg SSO nsing Yuzhnoye Saudi Saudisat 3 Science RSRI RSRI - 35 kg SSO Arabia Saudi Communic SaudiComsat 3 RSRI RSRI - 12 kg SSO Arabia ations Saudi Communic SaudiComsat 4 RSRI RSRI - 12 kg SSO Arabia ations Saudi Communic SaudiComsat 5 RSRI RSRI - 12 kg SSO Arabia ations Saudi Communic SaudiComsat 6 RSRI RSRI - 12 kg SSO Arabia ations Saudi Communic SaudiComsat 7 RSRI RSRI - 12 kg SSO Arabia ations AeroSpace AeroSpace AKS-1 Russia Technology - 12 kg SSO Syst. Syst. AeroSpace AeroSpace AKS-2 Russia Technology - 12 kg SSO Syst. Syst. P-Pod-A PolySat 4 U.S. Technology Un. Cal Poly Un. Cal Poly Cubesat 1 kg SSO P-Pod-A CAPE-1 U.S.
    [Show full text]
  • WORLD SPACECRAFT DIGEST by Jos Heyman 2007 Version: 1 July 2016 © Copyright Jos Heyman
    WORLD SPACECRAFT DIGEST by Jos Heyman 2007 Version: 1 July 2016 © Copyright Jos Heyman 2007 001A (29709) Name: Lapan-Tubsat Country: Indonesia Launch date: 10 January 2007 Re-entry: in orbit Launch site: Sriharikota Launch vehicle: PSLV Orbit: 620 x 638 km, inclination: 97.9 ° The Lembaga Penerbangan dan Antariksa Nasional Indonesia, meaning Indonesian National Aeronautics and Space Agency (Lapan)-Tubsat was a 57 kg satellite assembled at the Technical University of Berlin. It carried two CCD color cameras as well as an S band payload transmitter. The real time images were used to monitor regions affected by the disasters that have plagued the country in the previous year. 2007 001B (29710) Name: IRS P-7 Country: India Launch date: 10 January 2007 Re-entry: in orbit Launch site: Sriharikota Launch vehicle: PSLV Orbit: 641 x 621 km, inclination: 97.9 ° IRS P-7 or Cartosat-2 was a 635 kg cartographic satellite which carried imaging equipment with a resolution of 1m. 2007 001C (29711) Name: SRE Country: India Launch date: 10 January 2007 Re-entry: 22 January 2007 Launch site: Sriharikota Launch vehicle: PSLV Orbit: 486 x 641 km, inclination: 97.9 ° The Space Capsule Recovery Experiment (SRE) demonstrated the capability to recover an orbiting space capsule with an emphasis on thermal protection systems, navigation, guidance and control, hypersonic aerothermodynamics, management of communication blackout, deceleration and floatation system, recovery operations, etc. The 550 kg payload remained in orbit until 22 January 2007 during which it was used to perform experiments in micro-gravity environment. The capsule then de-orbited and re-entered using a parachute system.
    [Show full text]
  • The First One Hundred Cubesats: a Statistical Look
    Swartwout, M. (2013): JoSS, Vol. 2, No. 2, pp. 213-233 (Peer-reviewed Article available at www.jossonline.com) www.DeepakPublishing.com www.JoSSonline.com The First One Hundred CubeSats: A Statistical Look Michael Swartwout Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, Missouri, USA Abstract The concept of CubeSats was publicly proposed in 2000, with the first CubeSats launched in 2003. By the end of 2012, more than one hundred CubeSats have been launched, and 80 more are manifested for launches in 2013, with at least that many expected in 2014. Ten years ago, CubeSats were routinely dismissed by industry profes- sionals as being too small to be worth flying; now, NASA is the majority launch broker, and a significant share of the manifests are filled by U.S. DoD-sponsored, industry-built CubeSat missions. How did initial perceptions of CubeSats evolve to this state? Are CubeSats toys, tools, or merely another source of orbital debris? With so many CubeSats now in orbit, it is now possible to make a data-based assessment of these missions. Us- ing data collected from a variety of sources, this study evaluates the on-orbit performance of CubeSats. The history of CubeSat missions is reviewed, with the missions classified according to size, origin, mission life, and on-orbit performance. It is shown that several correctable design/implementation errors plague the university side of Cube- Sat missions, and that the P-POD launch container, not the CubeSat specification, is the true enabling technology for this class of mission. Poly-Picosatellite Orbital Deployer (P-POD), a stan- 1.
    [Show full text]
  • MASTER's THESIS Nanosat / Cubesat Constellation Concepts
    2009:092 MASTER'S THESIS Nanosat / Cubesat constellation concepts Alexandru Catalin Munteanu Luleå University of Technology Master Thesis, Continuation Courses Space Science and Technology Department of Space Science, Kiruna 2009:092 - ISSN: 1653-0187 - ISRN: LTU-PB-EX--09/092--SE CRANFIELD UNIVERSITY ALEXANDRU CATALIN MUNTEANU NANOSAT / CUBESAT CONSTELLATION CONCEPTS SCHOOL OF ENGINEERING Astronautics and Space Engineering MSc. THESIS Academic year: 2008 – 2009 Supervisor: Dr. Stephen Hobbs June 2009 CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING Astronautics and Space Engineering MSc THESIS Academic Year 2008 – 2009 ALEXANDRU CATALIN MUNTEANU Nanosat / Cubesat Constellation Concepts Supervisor: Dr. Stephen Hobbs June 2009 This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science © Cranfield University 2009. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. Alexandru Munteanu ABSTRACT This thesis was produced at Cranfield University, with support from EADS Astrium who introduced the base requirements for the study. The subject to be researched was the possibility of using Cubesats for producing viable Earth Observation missions when they would be used in some constellation configuration. The project involved surveying nanosat / Cubesat constellation markets and concepts (e.g. real-time data) for Earth Observation, using new / enabling technologies (i.e. deployable membranes, quad junction cells, miniature instruments). The project also contributes to the Cubesat projects by providing a roadmap of possible future missions enabled by advanced Cubesats. The study concluded by selecting a present day possible mission which could be developed by using COTS components and space-proved instruments and some missions which could be developed in the near future using other new technologies yet to be made available for space applications.
    [Show full text]