Chronic Addiction to Dextromethorphan Cough Syrup: a Case Report
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Hallucinogens - LSD, Peyote, Psilocybin, and PCP
Information for Behavioral Health Providers in Primary Care Hallucinogens - LSD, Peyote, Psilocybin, and PCP What are Hallucinogens? Hallucinogenic compounds found in some plants and mushrooms (or their extracts) have been used— mostly during religious rituals—for centuries. Almost all hallucinogens contain nitrogen and are classified as alkaloids. Many hallucinogens have chemical structures similar to those of natural neurotransmitters (e.g., acetylcholine-, serotonin-, or catecholamine-like). While the exact mechanisms by which hallucinogens exert their effects remain unclear, research suggests that these drugs work, at least partially, by temporarily interfering with neurotransmitter action or by binding to their receptor sites. This InfoFacts will discuss four common types of hallucinogens: LSD (d-lysergic acid diethylamide) is one of the most potent mood-changing chemicals. It was discovered in 1938 and is manufactured from lysergic acid, which is found in ergot, a fungus that grows on rye and other grains. Peyote is a small, spineless cactus in which the principal active ingredient is mescaline. This plant has been used by natives in northern Mexico and the southwestern United States as a part of religious ceremonies. Mescaline can also be produced through chemical synthesis. Psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) is obtained from certain types of mushrooms that are indigenous to tropical and subtropical regions of South America, Mexico, and the United States. These mushrooms typically contain less than 0.5 percent psilocybin plus trace amounts of psilocin, another hallucinogenic substance. PCP (phencyclidine) was developed in the 1950s as an intravenous anesthetic. Its use has since been discontinued due to serious adverse effects. How Are Hallucinogens Abused? The very same characteristics that led to the incorporation of hallucinogens into ritualistic or spiritual traditions have also led to their propagation as drugs of abuse. -
Cerebellar Toxicity of Phencyclidine
The Journal of Neuroscience, March 1995, 75(3): 2097-2108 Cerebellar Toxicity of Phencyclidine Riitta N&kki, Jari Koistinaho, Frank Ft. Sharp, and Stephen M. Sagar Department of Neurology, University of California, and Veterans Affairs Medical Center, San Francisco, California 94121 Phencyclidine (PCP), clizocilpine maleate (MK801), and oth- Phencyclidine (PCP), dizocilpine maleate (MK801), and other er NMDA antagonists are toxic to neurons in the posterior NMDA receptor antagonistshave attracted increasing attention cingulate and retrosplenial cortex. To determine if addition- becauseof their therapeutic potential. These drugs have neuro- al neurons are damaged, the distribution of microglial ac- protective properties in animal studies of focal brain ischemia, tivation and 70 kDa heat shock protein (HSP70) induction where excitotoxicity is proposedto be an important mechanism was studied following the administration of PCP and of neuronal cell death (Dalkara et al., 1990; Martinez-Arizala et MK801 to rats. PCP (10-50 mg/kg) induced microglial ac- al., 1990). Moreover, NMDA antagonists decrease neuronal tivation and neuronal HSP70 mRNA and protein expression damage and dysfunction in other pathological conditions, in- in the posterior cingulate and retrosplenial cortex. In ad- cluding hypoglycemia (Nellgard and Wieloch, 1992) and pro- dition, coronal sections of the cerebellar vermis of PCP (50 longed seizures(Church and Lodge, 1990; Faingold et al., 1993). mg/kg) treated rats contained vertical stripes of activated However, NMDA antagonists are toxic to certain neuronal microglial in the molecular layer. In the sagittal plane, the populations in the brain. Olney et al. (1989) demonstratedthat microglial activation occurred in irregularly shaped patch- the noncompetitive NMDA antagonists,PCP, MK801, and ke- es, suggesting damage to Purkinje cells. -
Hallucinogens
Hallucinogens What Are Hallucinogens? Hallucinogens are a diverse group of drugs that alter a person’s awareness of their surroundings as well as their thoughts and feelings. They are commonly split into two categories: classic hallucinogens (such as LSD) and dissociative drugs (such as PCP). Both types of hallucinogens can cause hallucinations, or sensations and images that seem real though they are not. Additionally, dissociative drugs can cause users to feel out of control or disconnected from their body and environment. Some hallucinogens are extracted from plants or mushrooms, and others are synthetic (human-made). Historically, people have used hallucinogens for religious or healing rituals. More recently, people report using these drugs for social or recreational purposes. Hallucinogens are a Types of Hallucinogens diverse group of drugs Classic Hallucinogens that alter perception, LSD (D-lysergic acid diethylamide) is one of the most powerful mind- thoughts, and feelings. altering chemicals. It is a clear or white odorless material made from lysergic acid, which is found in a fungus that grows on rye and other Hallucinogens are split grains. into two categories: Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) comes from certain classic hallucinogens and types of mushrooms found in tropical and subtropical regions of South dissociative drugs. America, Mexico, and the United States. Peyote (mescaline) is a small, spineless cactus with mescaline as its main People use hallucinogens ingredient. Peyote can also be synthetic. in a wide variety of ways DMT (N,N-dimethyltryptamine) is a powerful chemical found naturally in some Amazonian plants. People can also make DMT in a lab. -
From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia. -
DEMAND REDUCTION a Glossary of Terms
UNITED NATIONS PUBLICATION Sales No. E.00.XI.9 ISBN: 92-1-148129-5 ACKNOWLEDGEMENTS This document was prepared by the: United Nations International Drug Control Programme (UNDCP), Vienna, Austria, in consultation with the Commonwealth of Health and Aged Care, Australia, and the informal international reference group. ii Contents Page Foreword . xi Demand reduction: A glossary of terms . 1 Abstinence . 1 Abuse . 1 Abuse liability . 2 Action research . 2 Addiction, addict . 2 Administration (method of) . 3 Adverse drug reaction . 4 Advice services . 4 Advocacy . 4 Agonist . 4 AIDS . 5 Al-Anon . 5 Alcohol . 5 Alcoholics Anonymous (AA) . 6 Alternatives to drug use . 6 Amfetamine . 6 Amotivational syndrome . 6 Amphetamine . 6 Amyl nitrate . 8 Analgesic . 8 iii Page Antagonist . 8 Anti-anxiety drug . 8 Antidepressant . 8 Backloading . 9 Bad trip . 9 Barbiturate . 9 Benzodiazepine . 10 Blood-borne virus . 10 Brief intervention . 11 Buprenorphine . 11 Caffeine . 12 Cannabis . 12 Chasing . 13 Cocaine . 13 Coca leaves . 14 Coca paste . 14 Cold turkey . 14 Community empowerment . 15 Co-morbidity . 15 Comprehensive Multidisciplinary Outline of Future Activities in Drug Abuse Control (CMO) . 15 Controlled substance . 15 Counselling and psychotherapy . 16 Court diversion . 16 Crash . 16 Cross-dependence . 17 Cross-tolerance . 17 Custody diversion . 17 Dance drug . 18 Decriminalization or depenalization . 18 Demand . 18 iv Page Demand reduction . 19 Dependence, dependence syndrome . 19 Dependence liability . 20 Depressant . 20 Designer drug . 20 Detoxification . 20 Diacetylmorphine/Diamorphine . 21 Diuretic . 21 Drug . 21 Drug abuse . 22 Drug abuse-related harm . 22 Drug abuse-related problem . 22 Drug policy . 23 Drug seeking . 23 Drug substitution . 23 Drug testing . 24 Drug use . -
Hallucinogens & Dissociative Drugs
® DRUG FACT SHEET Hallucinogens & Dissociative Drugs Some effects of PCP including depression and memory loss may last six months to a year following prolonged daily use. Class of drug: Hallucinogens (most common form is LSD) Dissociative drugs (most commonly form is PCP) Main active ingredient: Hallucinogens: Lysergic acid diethylamide, mescaline, psilocybin, ibogaine Dissociative: Phencyclidine What it looks like: LSD: Clear, odorless liquid, brightly colored tablets, impregnated blotter paper, thin squares of gelatin PCP: liquid, capsules, white crystalline powder, gum There are hundreds of synthetic hallu - Street names: Lysergic acid diethylamide: LSD, Acid, Blotter, cinogens on the market today including Phencyclidine: PCP, Angel Dust, Loveboat, Wack 25I-NBOMe (N-Bomb) and 2C-I (Smiles) which have been attributed to How it is used: Both hallucinogens and dissociative drugs can be multiple deaths and significant injuries. swallowed, injected or smoked. LSD liquid and gelatin They are generally found as powders, liq - forms can be put in the eyes. PCP is often sprinkled uids, soaked into blotter paper or laced on or sprayed on cigarettes, parsley and marijuana. something edible. Both drugs are classi - fied as Schedule I substances, making Duration of high: Hallucinogens: effects begin within 30 to 90 minutes possession, distribution and manufacture and last from six to twelve hours illegal. PCP: effects begin within minutes and last for hours Withdrawal symptoms: Depression, memory loss U.S. information Effects: Physical (both) —increased heart rate and blood pressure, elevated body temperature, loss of In 2014, nearly 1.3 million appetite, loss of muscle coordination, slurred speech Americans aged 12 and older Hallucinogens reported using LSD in the past Mental —hallucinations; intensified senses; distortion year and 90,000 reported using of time, reality and environment; confusion; mood PCP in the past year. -
Phencyclidine: an Update
Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V. -
Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209 -
Drugs of Abuseon September Archived 13-10048 No
U.S. DEPARTMENT OF JUSTICE DRUG ENFORCEMENT ADMINISTRATION WWW.DEA.GOV 9, 2014 on September archived 13-10048 No. v. Stewart, in U.S. cited Drugs of2011 Abuse EDITION A DEA RESOURCE GUIDE V. Narcotics WHAT ARE NARCOTICS? Also known as “opioids,” the term "narcotic" comes from the Greek word for “stupor” and originally referred to a variety of substances that dulled the senses and relieved pain. Though some people still refer to all drugs as “narcot- ics,” today “narcotic” refers to opium, opium derivatives, and their semi-synthetic substitutes. A more current term for these drugs, with less uncertainty regarding its meaning, is “opioid.” Examples include the illicit drug heroin and pharmaceutical drugs like OxyContin®, Vicodin®, codeine, morphine, methadone and fentanyl. WHAT IS THEIR ORIGIN? The poppy papaver somniferum is the source for all natural opioids, whereas synthetic opioids are made entirely in a lab and include meperidine, fentanyl, and methadone. Semi-synthetic opioids are synthesized from naturally occurring opium products, such as morphine and codeine, and include heroin, oxycodone, hydrocodone, and hydromorphone. Teens can obtain narcotics from friends, family members, medicine cabinets, pharmacies, nursing 2014 homes, hospitals, hospices, doctors, and the Internet. 9, on September archived 13-10048 No. v. Stewart, in U.S. cited What are common street names? Street names for various narcotics/opioids include: ➔ Hillbilly Heroin, Lean or Purple Drank, OC, Ox, Oxy, Oxycotton, Sippin Syrup What are their forms? Narcotics/opioids come in various forms including: ➔ T ablets, capsules, skin patches, powder, chunks in varying colors (from white to shades of brown and black), liquid form for oral use and injection, syrups, suppositories, lollipops How are they abused? ➔ Narcotics/opioids can be swallowed, smoked, sniffed, or injected. -
DXM Fast Facts
What is DXM? doses—usually at least half an 8-ounce ketamine. While under the influence of bottle—by drinking the liquid very the drug, which can last for as long as DXM (dextromethorphan) is a quickly. (Consumption of large quanti- 6 hours, DXM abusers risk injuring cough suppressant available in a ties of cough syrup induces vomiting. themselves and others because of the variety of over-the-counter cough and Thus, to achieve the desired effects, drug’s effects on visual perception and cold medications. DXM is abused abusers must drink the product quickly cognitive processes. because, when taken in doses that enough to allow the body to absorb the In addition, individuals who ingest dramatically exceed those recom- DXM before vomiting occurs.) mended by physicians and pharma- high doses of DXM risk hyperthermia cists, it produces hallucinations and The availability of powdered extrac- (exceptionally high fever), particularly if a sense of dissociation. tions of DXM has resulted in abusers they use the drug in a hot environment either inhaling the powder (snorting) or or while physically exerting themselves— What does DXM look like? repackaging it in capsules, which are such as at a rave or dance club. Other then swallowed. risks associated with DXM abuse As an over-the-counter medication, include nausea, abdominal pain, vomit- DXM is available in various forms Who abuses DXM? ing, irregular heartbeat, high blood including liquids, lozenges, tablets, pressure, headache, numbness of capsules, and gel caps. In addition, DXM It is difficult to gauge the extent of fingers and toes, loss of consciousness, powder—prepared by extracting the drug DXM abuse in the United States seizures, brain damage, and death. -
Proposal for Reclassification of Cough Medicines Containing Dextromethorphan, Opium Tincture, Squill Oxymel and Pholcodine to Restricted Medicines
Proposal for reclassification of cough medicines containing dextromethorphan, opium tincture, squill oxymel and pholcodine to restricted medicines Purpose Medsafe has recently been alerted to instances of abuse of cough medicines containing dextromethorphan. Concern was raised over the easy availability of opioid (and opioid-like) cough medicines which can be bought at a pharmacy or supermarket without healthcare professional supervision. Dextromethorphan is a substance that does not belong to the opioid family but has a chemical structure closely resembling the opioids. Dextromethorphan has a history of abuse in New Zealand and other countries. There are also other cough medicines available as pharmacy medicines which have been noted as at least having a potential for abuse, for example cough medicines containing pholcodine and Gees linctus which contains anhydrous morphine. Pholcodine and anhydrous morphine are both opioids. Medsafe therefore requests that Medicines Classification Committee (MCC) considers reclassification of dextromethorphan, opium tincture, squill oxymel and pholcodine containing products to Pharmacist-Only (restricted) medicines. Medsafe considers that a reclassification to restricted medicine balances a need for better supervision whilst maintaining access for those who benefit from using these medicines. Background Dextromethorphan and misuse (1) Dextromethorphan (DXM) is the D- isomer of the codeine synthetic analogue, levorphanol. DXM also structurally resembles ketamine and phenycycline which are dissociative agents, meaning that they can be used to incite a type of general anesthesia characterized by analgesia and amnesia with minimal effect on respiratory function. DXM is an opioid, but because of its stereochemistry, DXM and its metabolites do not bind to the mu and delta opioid receptors, thus avoiding classic opioid toxicity. -
University of Groningen Stereoselectivity in the Hepatic Metabolism and Transport of Quaternary Drugs of the Morphinan Type Lant
University of Groningen Stereoselectivity in the hepatic metabolism and transport of quaternary drugs of the morphinan type Lanting, Aleida Bartha Louisa IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2000 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lanting, A. B. L. (2000). Stereoselectivity in the hepatic metabolism and transport of quaternary drugs of the morphinan type. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 24-09-2021 In this thesisthe potential of some quaternaryamine derivativesof the morphinan analoguesdextrorphan, levorphanol, dextromethorphan and levomethorphanas model compoundswas investigatedto study stereoselectivityin hepatic metabolismand transport of cationic drugs.These model compoundspossess a rigid stereochemicalstructure, resulting in major differencesin receptor affinity. We assumedthat the major influenceof the stereochemicalstructure on the receptor level might also causedifferences in carrier-mediatedtransport and biotransformation processes.