Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss

Total Page:16

File Type:pdf, Size:1020Kb

Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209 G. Full Dosing versus Microdosing . ......................................................209 H. Historical Studies ......................................................................210 I. Ongoing Clinical Trials.................................................................210 by guest on September 26, 2021 II. Psychedelic Compounds as Neuroplastic Agents . ..........................................211 A. Neuroplasticity Impairments in Psychiatric Disorders . ...............................211 B. Effects of Psychedelic Compounds on Neuronal and Synaptic Plasticity..................223 1. Ketamine. ........................................................................223 2. N,N-Dimethyltryptamine, 5-Methoxy-N,N-dimethyltryptamine, and Ayahuasca ......224 3. Lysergic Acid Diethylamide . ......................................................226 4. Psilocybin . ........................................................................227 5. 3,4-Methylenedioxymethamphetamine...............................................227 III. Psychedelic Compounds as Immunomodulatory and Anti-Inflammatory Agents. .............227 A. Inflammation . ........................................................................227 B. Inflammation-Induced Psychiatric Symptoms . ..........................................228 C. Anti-Inflammatory Therapies in the Treatment of Psychiatric Disorders.................228 D. Immunomodulatory and Anti-Inflammatory Pathways Activated by Psychedelics . .......228 1. N,N-Dimethyltryptamine, 5-Methoxy-N,N-dimethyltryptamine, and Ayahuasca ......230 2. Psilocybin . ........................................................................230 3. Lysergic Acid Diethylamide . ......................................................231 4. 2,5-Dimethoxy-4-iodoamphetamine . ................................................231 5. 3,4-Methylenedioxymethamphetamine...............................................231 6. Ketamine. ........................................................................231 E. s1 Receptor............................................................................232 Address correspondence to: Gabriella Gobbi, Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, 1033, Av. des Pins Ouest, Montreal, QC H3A 1A1, Canada. E-mail: [email protected] This work was supported by the Canadian Institute for Health Research (CIHR) [Grant # 436986] and by the Réseau Québécois sur le Suicide, les Troubles de l’Humeur et les Troubles Associés (RQSHA) [Grant # 268065]. D.D.G. is recipient of Fond Recherche Québec-Santé (FRQS) and Canadian Institutes for Health Research (CIHR) postdoctoral fellowships. G.G. is a consultant for Diamond Therapeutic Inc. The other authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. s This article has supplemental material available at pharmrev.aspetjournals.org. https://doi.org/10.1124/pharmrev.120.000056. 202 Psychedelics in Psychiatry: Therapeutic Mechanisms 203 IV. Psychedelic Compounds as Modulators of Neurotransmitter Systems........................232 A. Neurotransmitter Dysfunctions in Psychiatric Disorders . ...............................232 B. Serotonin ..............................................................................234 1. Lysergic Acid Diethylamide . ......................................................234 2. 3,4-Methylenedioxymethamphetamine...............................................234 3. N,N-Dimethyltryptamine, 5-Methoxy-N,N-dimethyltryptamine, and Ayahuasca ......235 4. Ketamine. ........................................................................236 5. Psilocybin . ........................................................................236 C. Dopamine..............................................................................237 1. Ketamine. ........................................................................237 2. Lysergic Acid Diethylamide . ......................................................237 3. 3,4-Methylenedioxymethamphetamine...............................................237 4. N,N-Dimethyltryptamine, 5-Methoxy-N,N-dimethyltryptamine, and Ayahuasca ......238 D. Glutamate .............................................................................238 1. Lysergic Acid Diethylamide . ......................................................238 2. Psilocybin . ........................................................................239 3. Ketamine. ........................................................................239 4. 3,4-Methylenedioxymethamphetamine...............................................239 5. N,N-Dimethyltryptamine, Ayahuasca, 5-Methoxy-N,N-dimethyltryptamine...........240 E. GABA . ..............................................................................240 1. Ketamine. ........................................................................240 2. Lysergic Acid Diethylamide . ......................................................241 3. 3,4-Methylenedioxymethamphetamine...............................................241 4. Psilocybin . ........................................................................241 5. N,N-Dimethyltryptamine, 5-Methoxy-N,N-dimethyltryptamine, Ayahuasca...........241 F. Norepinephrine ........................................................................241 1. Ketamine. ........................................................................242 ABBREVIATIONS: ACC, anterior cingulate cortex; ACTH, adrenocorticotropic hormone; AD, Alzheimer’s disease; ADRA, a adrenergic receptor; ADRB, b adrenergic receptor; AIDS, acquired immunodeficiency syndrome; ALD-52, 1-acetyl-LSD; ALT, alternative lengthening of telomeres; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AN, anorexia nervosa; ANIA3, activity and neurotransmitter-in- duced early gene 3; AR, androgen receptor; ASD, autism spectrum disorder; AUD, alcohol use disorder; BD, bipolar disorder; BDNF, brain- derived neurotrophic factor; 1B-LSD, 1-butanoyl-LSD; CA, cornu ammonis; CACNA1A, voltage-dependent P/Q-type calcium channel subunit alpha-1A; CAMK2, calcium/calmodulin-dependent protein kinase 2; CCL5, C-C motif chemokine 5; CEBPB, CCAAT/enhancer-binding protein beta; cFOS, proto-oncogene c-Fos; CHRM, muscarinic acetylcholine receptor M2; COMT, catechol O-methyltransferase; CORT, cortisol; CREB, cAMP response element-binding protein; CRF, corticotropin-releasing factor; CSTC, cortico-striato-thalamo-cortical; CX3CL1, fractalkine CXCL10 C-X-C motif chemokine 10; DA, dopamine; DAT, dopamine transporter; DHEA, dehydroepiandrosterone; D2L, dopamine 2 receptor (long splice variant); DMN, default mode network; DMT, N,N-dimethyltryptamine; DOI, 2,5-dimethoxy-4-iodoamphetamine; DRN, dorsal raphe nucleus; EAAT, excitatory amino acid transporter; EEG, electroencephalogram; EGR, early growth response; EPAC1, rap guanine nucleotide exchange factor 3; ERK, extracellular signal–regulated kinase; FDA, Food and Drug Administration; fMRI, functional magnetic resonance imaging; FPTC, frontoparietal task control network; GAT, GABA transporter; GABR, gamma-aminobutyric acid type B receptor; GH, growth hormone; GLU, glutamate; GPCR, G protein–coupled receptor; 5-GSyl-a-MeDA, 5-(glutathion-Syl)-a-methyldopamine; 6-HO- MDMA, 2-hydroxy-4,5(methylenedioxy)methamphetamine; HPA, hypothalamic-pituitary-adrenal axis; HRH, histamine receptor; 5-HT, se- rotonin; I1, imidazoline receptor 1; ICAM, intercellular adhesion molecule; IDO, indoleamine 2,3-dioxygenase; IFN-g, interferon-g; IKB, inhibitor of kB kinase; IL, interleukin; iNOS, inducible nitric oxide synthase; IP3R, inositol trisphosphate receptor; KROX20, early growth response protein 2; LC, locus coeruleus; LSD, lysergic acid diethylamide; M3, muscarinic receptor subtype 3; M5, muscarinic receptor subtype 5; MAOI, monoamine oxidase inhibitor; MAPK1, mitogen-activated protein kinase 1; MCI, mild cognitive impairment; MCP1, monocyte chemoattractant
Recommended publications
  • Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
    International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL.
    [Show full text]
  • Aripiprazole As an Adjunct to Anti-Depressants for Major Depressive Disorder: Clinical Effectiveness, Cost-Effectiveness, and Guidelines
    TITLE: Aripiprazole as an Adjunct to Anti-Depressants for Major Depressive Disorder: Clinical Effectiveness, Cost-Effectiveness, and Guidelines DATE: 04 May 2016 RESEARCH QUESTIONS 1. What is the clinical efficacy of aripiprazole as an adjunct to antidepressants for the treatment of patients with major depressive disorder who have had an inadequate response to prior antidepressant treatments? 2. What is the cost-effectiveness of aripiprazole as an adjunct to antidepressants for the treatment of patients with major depressive disorder who have had an inadequate response to prior antidepressant treatments? 3. What are the evidence-based guidelines for the use of aripiprazole for the treatment of patients with major depressive disorder who have had an inadequate response to prior antidepressant treatments? KEY FINDINGS Three systematic reviews with meta-analyses, two randomized controlled trials, and two evidence-based guidelines were identified regarding the use of aripiprazole as an adjunct to antidepressants for the treatment of patients with major depressive disorder who have had an inadequate response to prior antidepressant treatments. METHODS A limited literature search was conducted on key resources including PubMed, Ovid PsychINFO, Ovid Embase, The Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. No methodological filters were used to limit retrieval by study type. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2014 and April 29, 2016. Disclaimer: The Rapid Response Service is an information service for those involved in planning and providing health care in Canada.
    [Show full text]
  • 2020 Prior Authorization Criteria
    2020 PRIOR AUTHORIZATION CRITERIA TABLE OF CONTENTS abiraterone tablet ...................................................................................................................... 217 ABRAXANE .............................................................................................................................. 131 ACTIMMUNE .............................................................................................................................. 14 ADASUVE ................................................................................................................................... 27 ADEMPAS ................................................................................................................................ 197 AFINITOR ................................................................................................................................. 217 AFINITOR DISPERZ ................................................................................................................. 217 AIMOVIG ..................................................................................................................................... 15 ALECENSA ............................................................................................................................... 217 ALIMTA ..................................................................................................................................... 131 ALIQOPA .................................................................................................................................
    [Show full text]
  • Switching from Clonidine Immediate-Release to Guanfacine Extended-Release
    / DE L’ACADÉMIE CANADIENNE DE PSYCHIATRIE DE L’ENFANT ET DE L’ADOLESCENT PSYCHOPHARMACOLOGY Switching from Clonidine Immediate-Release to Guanfacine Extended-Release Dean Elbe PharmD, BCPP1,2,3 s a clinical pharmacy specialist in child and adolescent (Canada) Ltd, 2012b). Clonidine has been used off-label Amental health, I am frequently asked how to switch in children for many years for treatment of insomnia, patients from clonidine immediate-release (IR) to guanfa- ADHD, and disruptive behaviour disorders (Hunt, Capper cine extended-release (XR). This therapeutic switch may be & O’Connell, 1990; Rubinstein; Jaselskis, Cook, Fletcher required when poor adherence to a clonidine IR regimen & Leventhal, 1992; Silver & Licamele, 1994; Palumbo et (typically requiring 3–4 doses daily) is identified, when al., 2008; Efron, Lycett & Sciberras, 2014). A clonidine XR clonidine dose-optimization is limited by sedation, brady- formulation is not available in Canada, but is available in cardia or hypotension, or when coverage situations change. the United States for treatment of ADHD (Concordia Phar- The latter may occur if, for example, new eligibility for a maceuticals, Inc. 2015). government program or a third party-payer occurs. Weight-based dosing guidelines exist for clonidine IR Guanfacine XR, a selective alpha2A agonist, was first mar- (0.003–0.008 mg/kg/day) and guanfacine XR (0.05–0.08 keted in Canada in late 2013 for the treatment of attention mg/kg/day) (Shire Pharma Canada ULC, 2019; Elbe et deficit hyperactivity disorder (ADHD) in children and ado- al., 2018). Based on these guidelines and other literature, lescents (Shire Pharma Canada ULC, 2019).
    [Show full text]
  • Ayahuasca: Spiritual Pharmacology & Drug Interactions
    Ayahuasca: Spiritual Pharmacology & Drug Interactions BENJAMIN MALCOLM, PHARMD, MPH [email protected] MARCH 28 TH 2017 AWARE PROJECT Can Science be Spiritual? “Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual. The notion that science and spirituality are somehow mutually exclusive does a disservice to both.” – Carl Sagan Disclosures & Disclaimers No conflicts of interest to disclose – I don’t get paid by pharma and have no potential to profit directly from ayahuasca This presentation is for information purposes only, none of the information presented should be used in replacement of medical advice or be considered medical advice This presentation is not an endorsement of illicit activity Presentation Outline & Objectives Describe what is known regarding ayahuasca’s pharmacology Outline adverse food and drug combinations with ayahuasca as well as strategies for risk management Provide an overview of spiritual pharmacology and current clinical data supporting potential of ayahuasca for treatment of mental illness Pharmacology Terms Drug ◦ Term used synonymously with substance or medicine in this presentation and in pharmacology ◦ No offense intended if I call your medicine or madre a drug! Bioavailability ◦ The amount of a drug that enters the body and is able to have an active effect ◦ Route specific: bioavailability is different between oral, intranasal, inhalation (smoked), and injected routes of administration (IV, IM, SC) Half-life (T ½) ◦ The amount of time it takes the body to metabolize/eliminate 50% of a drug ◦ E.g.
    [Show full text]
  • Dexmedetomidine)
    Frequently asked questions regarding alpha-2 agonist DEXDOMITOR® (dexmedetomidine) Q: How should I monitor a patient that has received DEXDOMITOR for sedation or as a premedication? A: The monitoring of vital signs is critical for any patient under sedation or anesthesia. It is important to monitor heart rate, blood pressure, palpable pulse quality, and respiratory rate and volume. Because a2 agonists cause peripheral vasoconstriction, the use of pulse oximetry may not adequately reflect the true status of the patient. Q: What can I expect to see in a patient under DEXDOMITOR sedation? A: The patient may have pale pink or grayish mucous membranes because of peripheral vasoconstriction. The sedation induced by DEXDOMITOR causes a decrease in respiratory rate and a lower body temperature. Q: What is considered a low heart rate? A: Because of the wide range of dog sizes and corresponding heart rates, normal heart rates should be based on the dog’s body size. A reduction in heart rate following a2 agonist sedation should be expected. Patient status should be evaluated by the simultaneous measurement of many parameters, including pulse quality, respiratory rate and quality, blood pressure, and heart rate. Q: What is the effect on the respiratory rate? A: DEXDOMITOR does not have a direct effect on respiration. Although the respiratory rate may decrease as a result of sedation, ventilatory volume generally increases, and overall ventilation (gas exchange) remains stable. Q: I am concerned about hypothermia. A: Hypothermia can occur in a patient following administration of any anesthetic or sedative drug. It is important that body temperature be maintained in all patients undergoing anesthesia or sedation, including those that receive an a2 agonist.
    [Show full text]
  • A Case Study on Addressing Abuse of a Safe and Effective Drug David C
    Spangler et al. Substance Abuse Treatment, Prevention, and Policy (2016) 11:22 DOI 10.1186/s13011-016-0067-0 DEBATE Open Access Dextromethorphan: a case study on addressing abuse of a safe and effective drug David C. Spangler1, Catherine M. Loyd1* and Emily E. Skor1,2 Abstract Background: Dextromethorphan is a safe, effective cough suppressant, available without a prescription in the United States since 1958. Due to a perceived prevalence of abuse of dextromethorphan by teens, in 2007 the Drug Enforcement Administration requested the Food and Drug Administration evaluate whether dextromethorphan should be recommended for scheduling under the Controlled Substances Act. The Food and Drug Administration held an Advisory Committee meeting in 2010 to provide a scientific and medical evaluation of dextromethorphan and its abuse potential. Discussion: To address reports of abuse, particularly by teens in the United States, the Consumer Healthcare Products Association initiated an abuse mitigation plan in 2010 with specific goals related to awareness of the behavior, perception of risk, social disapproval, and access to the products. In identifying abuse interventions, experts acknowledge that substance abuse among teens is a highly complex behavior and indicate that the best course of action is to address prevention by focusing on the factors that impact teen behavior. Conclusion: It is noteworthy that the annual prevalence of over-the-counter cough medicine abuse has sharply decreased since 2010. While a true cause-and-effect relationship cannot be assured, the Consumer Healthcare Products Association and its member companies believe that the increased awareness of the issue since the 2010 Food and Drug Administration Advisory Committee meeting, and the subsequent implementation of a well-delivered and targeted abuse mitigation plan that addressed the levers influencing teen decisions is contributing to the observed reduction in abuse.
    [Show full text]
  • Peakal: Protons I Have Known and Loved — Fifty Shades of Grey-Market Spectra
    PeakAL: Protons I Have Known and Loved — Fifty shades of grey-market spectra Stephen J. Chapman* and Arabo A. Avanes * Correspondence to: Isomer Design, 4103-210 Victoria St, Toronto, ON, M5B 2R3, Canada. E-mail: [email protected] 1H NMR spectra of 28 alleged psychedelic phenylethanamines from 15 grey-market internet vendors across North America and Europe were acquired and compared. Members from each of the principal phenylethanamine families were analyzed: eleven para- substituted 2,5-dimethoxyphenylethanamines (the 2C and 2C-T series); four para-substituted 3,5-dimethoxyphenylethanamines (mescaline analogues); two β-substituted phenylethanamines; and ten N-substituted phenylethanamines with a 2-methoxybenzyl (NBOMe), 2-hydroxybenzyl (NBOH), or 2,3-methylenedioxybenzyl (NBMD) amine moiety. 1H NMR spectra for some of these compounds have not been previously reported to our knowledge. Others have reported on the composition of “mystery pills,” single-dose formulations obtained from retail shops and websites. We believe this is the first published survey of bulk “research chemicals” marketed and sold as such. Only one analyte was unequivocally misrepresented. This collection of experimentally uniform spectra may help forensic and harm-reduction organizations identify these compounds, some of which appear only sporadically. The complete spectra are provided as supplementary data.[1] Keywords: 1H NMR, drug checking, grey markets, research chemicals, phenylethanamines, N-benzyl phenylethanamines, PiHKAL DOI: http://dx.doi.org/10.16889/isomerdesign-1 Published: 1 August 2015 Version: 1.03 “Once you get a serious spectrum collection, Nevertheless, an inherent weakness of grey markets is the the tendency is to push it as far as you can.”1 absence of regulatory oversight.
    [Show full text]
  • Download Executive Summary
    Comparative Effectiveness Review Number 43 Effective Health Care Program Off-Label Use of Atypical Antipsychotics: An Update Executive Summary Background Effective Health Care Program Antipsychotics medications are approved The Effective Health Care Program by the U.S. Food and Drug Administration was initiated in 2005 to provide valid (FDA) for treatment of schizophrenia and evidence about the comparative bipolar disorder. These medications are effectiveness of different medical commonly divided into two classes, interventions. The object is to help reflecting two waves of historical consumers, health care providers, and development: the conventional others in making informed choices antipsychotics and the atypical. The among treatment alternatives. Through conventional antipsychotics served as the its Comparative Effectiveness Reviews, first successful pharmacologic treatment the program supports systematic for primary psychotic disorders such as appraisals of existing scientific schizophrenia. Having been widely used evidence regarding treatments for for decades, the conventional high-priority health conditions. It also antipsychotics also produced various side promotes and generates new scientific effects requiring additional medications, evidence by identifying gaps in which spurred the development of the existing scientific evidence and atypical antipsychotics. supporting new research. The program Currently, nine atypical antipsychotic drugs puts special emphasis on translating have been approved by FDA: aripiprazole, findings into a variety of useful asenapine, clozapine, iloperidone, formats for different stakeholders, olanzapine, paliperidone, quetiapine, including consumers. risperidone, and ziprasidone. These drugs The full report and this summary are have been used off-label (i.e., for available at www.effectivehealthcare. indications not approved by FDA) for the ahrq.gov/reports/final.cfm. treatment of various psychiatric conditions.
    [Show full text]
  • Advantages and Disadvantages of Beta- Adrenergic Blocking Drugs in Hypertension
    Reprinted from ANCIOLOCY Vol. 29, No. -I April 1978 Copyright 0 1978 Prinred in U.S.A. All Rights Rewrced Advantages and Disadvantages of Beta- Adrenergic Blocking Drugs in Hypertension Eoin T. O'Brien DUBLIN, IRELAND General Measures Elevation of blood pressure should be regarded as one of a number of potential risk factors for cardiovascular disease-albeit a major risk factor- rather than a disease per se.' It is important to identify additional risk factors in the hypertensive patient, not only because collectively these factors may greatly magnify the cardiovascular risk, but also because modification of them may, of itself, lower the blood pressure and thus alleviate the risk and save the patient the inconvenience, expense, and potential harm that may result from even the simplest of drug regimes. Careful consideration should be given to the patient's diet (particularly in relation to the calorie intake in the case of obesity, the cholesterol and saturated fat content in the case of hyperlipidemia and patients at high risk, and the salt content) and to smoking habits, physical activity. stress. personality, and drug therapy, especially anovulant preparations. Other diseases, such as diabetes mellitus, which are associated with a high incidence of hypertension and pri- mary causes of hypertension must be excluded. Although there is still no statistical evidence to show that modification of these risk factors-with the exception of tobacco and anovulant preparations-will actually reduce mortal- ity, it does seem prudent on the basis of the evidence available to encourage the hypertensive patient to adjust his or her life-style not only to reduce the cardiovascular risk,2 but also because in many instances the mildly hypertensive patient will respond to this approach alone.
    [Show full text]
  • Preparation for a Workshop How to Prepare for Healing
    Preparation for a Workshop How to Prepare for Healing with Ayahuasca The Temple of the Way of Light http://templeofthewayoflight.org/ How to Prepare for Healing with Ayahuasca 2 Why Preparation is Important Comprehensive preparation for working with ayahuasca and a resolute commitment to ongoing integration after your retreat are as important as the healing you will experience whilst at the Temple. It is critical that you commit at the deepest level possible to the advice contained in this document – before, during and after your retreat – in order to ensure your healing experience is positive, safe and sustained over the long term. M any people from the West who are new to ayahuasca come with a misconception of the way the medicine works. There is no “quick fix” when awakening to higher aspects of consciousness or alleviating long-term pain and suffering. We can never offer any guarantees regarding healing, but we do sincerely and wholeheartedly promise to always try our best. Indigenous traditions have worked with ayahuasca for thousands of years and have never viewed it as a quick fix or a recreational experience. However, ayahuasca and the healing traditions of the Amazon are often able to offer a significant intervention into chronic emotional/psycho-spiritual imbalances and, sometimes, physical health conditions. It is fundamentally a transformational pathway to integrate and release the causes of pain and suffering. Ayahuasca is a powerful cleansing and purifying medicine that can rid the body of physical impurities, the mind and body of emotional blockages and self-limiting fear-filled patterns that have accumulated over a lifetime, as well as retrieve fragmented aspects of one’s soul due to past traumatic events.
    [Show full text]
  • Hallucinogens and Dissociative Drugs
    Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years.
    [Show full text]