Sapote Fruit Fly, Anastrepha Serpentina, Host List the Berries, Fruit, Nuts and Vegetables of the Listed Plant Species Are Now Considered Host Articles for A

Total Page:16

File Type:pdf, Size:1020Kb

Sapote Fruit Fly, Anastrepha Serpentina, Host List the Berries, Fruit, Nuts and Vegetables of the Listed Plant Species Are Now Considered Host Articles for A August 2019 Sapote Fruit Fly, Anastrepha serpentina, Host List The berries, fruit, nuts and vegetables of the listed plant species are now considered host articles for A. serpentina. Unless proven otherwise, all cultivars, varieties and hybrids of the plant species listed herein are considered suitable hosts of A. serpentina. Scientific Name Common Name Alchornea latifolia Sw. Cabeza de mico, canelito Annona glabra L. Alligator-apple, pond-apple Annona squamosa L. Custard-apple, sweetsop Averrhoa carambola L. Carambola, starfruit Bumelia sebolana Lundell N/A Byrsonima crassifolia (L.) Kunth Chaparro, golden-spoon Carica papaya L. Papaya 1 Cheiloclinium cognatum (Miers) A.C. Sm. Cocora, fruta de mono Chrysophyllum argenteum Jacq. Bastard redwood Chrysophyllum cainito L. Caimito, star-apple Chrysophyllum mexicanum Brandegee ex Standl. Caimitillo, caimito cimarrón Citrus xaurantium L. Sour orange Citrus maxima (Burm.) Merr. Pomelo, shaddock Citrus reticulata Blanco Mandarin, culate mandarin Citrus sinensis (L.) Osbeck Sweet orange, blood orange Citrus paradisi Macfad. Grapefruit Diospyros digyna Jacq. Black persimmon, black sapote Eugenia uniflora L. Brazil-cherry, Surinam-cherry Ficus gomelleira Kunth & C.D. Bouche N/A Inga feuilleei DC. Pacae, pacay Malus sylvestris (L.) Mill. Crab apple, European crab apple Mammea americana L. Mamey, mammee-apple Mangifera indica L. Mango Manilkara bella Monach. N/A Manilkara huberi (Ducke) A. Chev. N/A Manilkara zapota (L.) P. Royen Sapote, sapodilla Micropholis melinoniana Pierre Abiufi, baricoco Mimusops balata (Aubl.) C. F. Gaertn. N/A Persea americana Mill. Avocado 2 Pouteria buenaventurensis (Aubrev.) Pilz N/A Pouteria caimito (Ruiz & Pav.) Radlk. Caimito, abiu Pouteria campechiana (Kunth) Baehni Canistel, eggfruit-tree Pouteria gardneri (Mart. & Miq.) Baehni N/A Pouteria glomerata (Miq.) Radlk. N/A Pouteria lucuma (Ruiz & Pav.) Kuntze Lúcumo, lúcuma Pouteria macrophylla (Lam.) Eyma Lúcuma Pouteria psammophila (Mart.) Radlk. N/A Pouteria ramiflora (Mart.) Radlk. N/A Pouteria sapota (Jacq.) H. E. Moore & Stearn Mamey, mammee sapote Pouteria sp. N/A Pouteria torta (Mart.) Radlk. N/A Pouteria viridis (Pittier) Cronquist Green sapote Prunus persica (L.) Batsch Peach, durazno Psidium guajava L. Guava Salacia crassifolia (Mart. Ex Schult) G. Don N/A Sideroxylon capiri (A. DC.) Pittier subsp. tempisque (Pittier) Jungle plum Sideroxylon palmeri (Rose) T. D. Penn. Tree of Tinado Spondias mombin L. Hog-plum, yellow mombin Spondias purpurea L. Spanish-plum, purple mombin 1Mature green ‘Solo’ papayas are not regulated per 7 CFR § 319.56-25 2Mature green ‘Hass’ avocados are not regulated per 7 CFR § 319.56-30 and 7 CFR § 319.56-50 .
Recommended publications
  • Phytochemicals Are Natural Resources of Food Supplement for Happier People
    Horticulture International Journal Review Article Open Access Phytochemicals are natural resources of food supplement for happier people Abstract Volume 3 Issue 6 - 2019 Cacao plants are used for a widespread range of diseases and used in different forms such 1 2 as the full of magnesium for a healthy heart, brain for human, highest plant-based source Fakhrul Islam Sukorno, Shariful Islam, Ak of iron and used as mood elevator like a natural mood elevator and anti-depressant. Maca Lutful Kabir,3 Celia Vargas de la Cruz,4 Sakila are widely used in increases energy level and stamina. It is effectively used in women’s Zaman,5 Gali Adamu Ishaku6 health and mood like alleviates menstrual and menopause issues. Quinoa contains all the 1Department of Pharmacy, North south University, Bangladesh nine essential amino acids, almost twice as much fiber as most other grains and perfect 2Department of Pharmacy, Southeast University, Bangladesh for people with gluten intolerance. Goldenberry helps to prevent certain chronic diseases; 3Faculty of Pharmaceutical Technology, University of Dhaka, low in calories only has about 53 calories per 100 grams and modulates immune function. Bangladesh 4 Lucuma contains beneficial nutrients that sugar lacks. It can help the digestive system Faculty of Pharmacy and Biochemistry - Centro work properly and improves the transportation of oxygen into cells. Purple Corn helps Latinoamericano de Enseñanza e Investigación en Bacteriología the regeneration of cells and connective tissues. Could reduce cancer risk as anthocyanins Alimentaria, Universidad Nacional Mayor de San Marcos, Perú 5Department of Pharmacy, Daffodil International University, could kill cancer cells. Prevents degeneration of cells and slows aging process.
    [Show full text]
  • (Pouteria Sapota, Sapotaceae) from Southeastern Mexico: Its Putative Domestication Center
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 7-6-2019 Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center Jaime Martínez-Castillo Centro de Investigación Científica de ucatánY (CICY), [email protected] Nassib H. Blancarte-Jasso Centro de Investigación Científica de ucatánY (CICY) Gabriel Chepe-Cruz Centro de Investigación Científica de ucatánY (CICY) Noemí G. Nah-Chan Centro de Investigación Científica de ucatánY (CICY) Matilde M. Ortiz-García Centro de Investigación Científica de ucatánY (CICY) See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Martínez-Castillo, Jaime; Blancarte-Jasso, Nassib H.; Chepe-Cruz, Gabriel; Nah-Chan, Noemí G.; Ortiz- García, Matilde M.; and Arias, Renee S., "Structure and genetic diversity in wild and cultivated populations of Zapote mamey (Pouteria sapota, Sapotaceae) from southeastern Mexico: its putative domestication center" (2019). Publications from USDA-ARS / UNL Faculty. 2200. https://digitalcommons.unl.edu/usdaarsfacpub/2200 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Jaime Martínez-Castillo, Nassib H.
    [Show full text]
  • New World Guava Fruit Fly, Anastrepha Striata, Host List the Berries, Fruit, Nuts and Vegetables of the Listed Plant Species Are Now Considered Host Articles for A
    November 2018 New World Guava Fruit Fly, Anastrepha striata, Host List The berries, fruit, nuts and vegetables of the listed plant species are now considered host articles for A. striata. Unless proven otherwise, all cultivars, varieties, and hybrids of the plant species listed herein are considered suitable hosts of A. striata. Scientific Name Common Name Acca sellowiana (O. Berg) Burret Pineapple-guava, feijoa Anacardium occidentale L. Cashew, cajuil Annona cherimola Mill. Cherimoya, custard-apple Annona muricata L. Soursop, araticum-grande Averrhoa carambola L. Carambola, starfruit Bellucia dichotoma Cogn. N/A Bellucia grossularioides (L.) Triana N/A Byrsonima crassifolia (L.) Kunth Craboo, golden-spoon Calycolpus moritzianus (O. Berg) Burret N/A Campomanesia lineatifolia Ruiz & P av. Guabiroba, guayaba de leche Carica papaya L. Papaya, pawpaw 1 Citrus xsinensis (L.) Osbeck Sweet orange, blood orange Citrus xtangeloJ. W. Ingram & H. E. Moore Tangelo, uglifruit Coffea arabica L. Arabica coffee, Arabian coffee Couma utilis (Mart.) Mull. Arg. Sorva, sorva pequena Diospyros digyna Jacq. Black persimmon, black sapote Eriobotrya japonica (Thunb). Lindl. Loquat, Japanese-medlar Eugenia ligustrina (Sw.) Willd. Birchberry, privet stopper Eugenia luschnathiana (O. Berg) Klotzsch ex B. D. Jacks N/A Eugenia stipitata McVaugh Araca-boi, araza Eugenia uniflora L. Brazil-cherry, Surinam-cherry Inga edulis Mart. Ice-cream-bean, inga-cipo Inga feuilleei DC. Pacae, pacay Inga velutina Wiild. N/A Malpighia glabra L. Escobillo Mangifera indica L. Common mango, Indian mango Manilkara zapota (L.) P. Royen Sapote, naseberry, sapodilla Oenocarpus bacaba Mart. Bacaba palm Common passionfruit, purple Passiflora edulis Sims granadilla Persea americana Mill. Avocado, abacate 2 Pouteria caimito (Ruiz & Pav.) Radlk.
    [Show full text]
  • Mamey Sapote Seed Oil (Pouteria Sapota). Potential, Composition, Fractionation and Thermal Behavior
    GRASAS Y ACEITES 66 (1) January–March 2015, e056 ISSN-L: 0017-3495 doi: http://dx.doi.org/10.3989/gya.0691141 Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior J.A. Solís-Fuentes1,*, R.C. Ayala-Tirado1, A.D. Fernández-Suárez1, and M.C. Durán-de-Bazúa,2,* 1Instituto de Ciencias Básicas, Universidad Veracruzana. Av. Dos Vistas s/n carretera Xalapa-Las Trancas, 91000 Xalapa, Ver., México 2Facultad de Química, UNAM. Conjunto “E”, Labs E301-E302-E303, Ciudad Universitaria, 04510 México, D.F. *Corresponding authors: [email protected]; [email protected] Submitted: 05 June 2014; Accepted: 10 September 2014 SUMMARY: The chemical composition of the waste from mamey sapote (Pouteria sapota) and its oil extracted from the seed (MSSO) of ripe and unripe fruits, was studied. The MSSO from ripe fruits was dry-fractionated, and the thermal and phase behaviors of its fractions and their mixtures with other known natural fats were analyzed. The main components of the mamey peel and the seed were crude fiber (81.32%) and fat (44.41% db), respectively. The seed oil contained oleic, stearic, palmitic and linoleic as its main fatty acids. The MSSO showed a simple thermal behavior with a broad fusion range and four maximum temperature peaks. The solid fractions showed maximum melting peaks at higher temperatures than the residual liquid. The MSSO solid fractions showed a potential for use as constituents in mixtures with other natural fats, such as cocoa butter or mango seed fat. KEYWORDS: DSC; Mamey sapote; Oil fractionation; Pouteria sapota; Seed oil RESUMEN: Aceite de semilla de Zapote Mamey (Pouteria sapota).
    [Show full text]
  • Pouteria Sapota
    Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana).
    [Show full text]
  • ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
    Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food.
    [Show full text]
  • Genetic Variation Among Cultivated Selections of Mamey Sapote (Pouteria Spp
    Proc. Fla. State Hort. Soc. 117:195-200. 2004. GENETIC VARIATION AMONG CULTIVATED SELECTIONS OF MAMEY SAPOTE (POUTERIA SPP. [SAPOTACEAE]) SUSAN CARRARA1 ideas about the differentiation between the three closely re- Florida International University lated species which produce the fruit commonly called “ma- Department of Biological Sciences mey sapote” have the potential to enlarge the range of traits 11200 SW 8th Street that should be represented in such a collection. Miami, FL 33158 This paper aims to facilitate mamey sapote germplasm col- lection expansion and management by identifying geograph- RICHARD CAMPBELL ic areas of high genetic diversity for future collection. This is Fairchild Tropical Botanic Garden accomplished by analyzing the genetic diversity of selections 11935 Old Cutler Road held by FTBG and the University of Florida’s Tropical Re- Miami, FL 33156 search and Education Center (TREC) using the Amplified Fragment Length Polymorphism (AFLP) technique. RAYMOND SCHNELL The mamey sapote selections in this study can be grouped United States Department of Agriculture-Agriculture Research Service into three main categories based on the region in which they 13601 Old Cutler Road were collected: Cuba, the Caribbean coast of Central America Miami, FL 33158 (specifically the Yucatán Peninsula, the Petén of Guatemala, and Belize), and the Pacific coast of Central America (Guate- mala, El Salvador, Nicaragua, and Costa Rica at elevations Additional index words. Mamey sapote, Pouteria spp., genetic from sea level to 1000 m) (Fig. 1). Genetic diversity of selec- diversity, AFLP tions from the Yucatán peninsula were hypothesized to be low due to their morphological similarity and to the land clearing Abstract.
    [Show full text]
  • Complete Inventory
    Maya Ethnobotany Complete Inventory of plants 1 Fifth edition, November 2011 Maya Ethnobotany Complete Inventory:: fruits,nuts, root crops, grains,construction materials, utilitarian uses, sacred plants, sacred flowers Guatemala, Mexico, Belize, Honduras Nicholas M. Hellmuth Maya Ethnobotany Complete Inventory of plants 2 Introduction This opus is a progress report on over thirty years of studying plants and agriculture of the present-day Maya with the goal of understanding plant usage by the Classic Maya. As a progress report it still has a long way to go before being finished. But even in its unfinished state, this report provides abundant listings of plants in a useful thematic arrangement. The only other publication that I am familiar with which lists even close to most of the plants utilized by the Maya is in an article by Cyrus Lundell (1938). • Obviously books on Mayan agriculture should have informative lists of all Maya agricultural crops, but these do not tend to include plants used for house construction. • There are monumental monographs, such as all the trees of Guatemala (Parker 2008) but they are botanical works, not ethnobotanical, and there is no cross-reference by kind of use. You have to go through over one thousand pages and several thousand tree species to find what you are looking for. • There are even important monographs on Maya ethnobotany, but they are usually limited to one country, or one theme, often medicinal plants. • There are even nice monographs on edible plants of Central America (Chízmar 2009), but these do not include every local edible plant, and their focus is not utilitarian plants at all, nor sacred plants.
    [Show full text]
  • 41002. BELOU MARMELOS (L.) Lyons. Rutacese. Bael Fruit. 41003
    30 SEEDS AND PLANTS IMPORTED. 41002. BELOU MARMELOS (L.) Lyons. Rutacese. Bael fruit. (Aegle marmelos Oorrea.) From Seharunpur, India. Presented by Mr. A. C. Hartless, superintendent, Botanic Gardens. Received August 31, 1915. See S. P. I. Nos. 24450 and 33094 for previous introductions and description. 41003. POUTERIA CAIMITO (Euiz and Pav.) Radlkofer. Sapotacese. (Lucuma caimito Roem. and Schult.) Abiu. From Lavras, Minas Geraes, Brazil. Presented by Mr. Benjamin H. Hunni- cutt, Escola Agricola de Lavras. Received August 5,1915. "A timber tree with edible fruits. It looks very much like cabelludinho. The fruit is a beautiful golden yellow and is the shape of the fruit of the limdo do matto. The fruit is somewhat sticky, but of a delicious flavor. The one we have on our place is a beautiful bush at present and would do very well as an ornamental plant. It is found in the States of Espirito Santo, Sao Paulo, and Minas Geraes." (Hunnicutt.) 41004. LITCHI CHINENSIS Sonnerat. Sapindacese. Litchi. (Nephelium litchi Cambess.) From Amoy, China. Presented by Mrs. L. W. Kip, at the request of Mr. John M. Nixon, New York City. Received August 21, 1915. " Some of the seeds came from Canton and Swatow, though I could not see any difference in the fruits from those grown in this region. The Chinese say that the litchi does not come true from seed, so they propagate it by scraping some of the bark from a branch and wrapping mud around it till rooted. Should do well in Florida and southern California and would be sure to flourish in Porto Rico." (Kip.) 41005.
    [Show full text]
  • Establecimiento Y Cultivo in Vitro De Pouteria Sapota (Jacquin) H
    Universidad de Costa Rica Ciudad Universitaria Rodrigo Facio Escuela de Biología Licenciatura en Genética y Biotecnología Trabajo final de graduación: Práctica dirigida Establecimiento y cultivo in vitro de Pouteria sapota (Jacquin) H. E. Moore & Stearn Ivannia Chinchilla Salazar 2008 i A mis padres, hermanos amigos y a Cristian por su apoyo y consejo incondicional. i A todos ellos con mucho esfuerzo, dedicación y cariño les dedico este trabajo. “Esta Memoria de una Práctica Dirigida fue aceptada por la comisión de Trabajos Finales de Graduación de la Escuela de Biología de la Universidad de Costa Rica, como requisito parcial para optar al grado de Licenciada en Biología, con énfasis en Genética y Biotecnología”. ___________________ Tutor : Dr. Jorge Mora Urpí Profesor emérito de la Escuela de Biología, UCR ________________________ Lector: M.Sc. Jorge Herrera Quirós Centro para Investigaciones en Granos y Semillas (CIGRAS), UCR _________________________ Lector : M.Sc. Álvaro Azofeifa Delgado Centro para Investigaciones en Granos y Semillas (CIGRAS), UCR ____________________________ Lector : Dr. Víctor Jiménez García Centro para Investigaciones en Granos y Semillas (CIGRAS), UCR ________________________ Dr.Virginia Solís Directora de la Escuela de Biología, UCR ________________________ Sustentante : Lic. Ivannia Chinchilla Salazar Escuela de Biología, UCR ii Agradecimiento A mi Comité Asesor y al Ing. Edgar Vargas † por el valioso conocimiento adquirido, consejo y dirección para realizar esta Práctica Dirigida de la mejor forma. A los señores Carlos Astorga y Carlos Umaña del CATIE A la Dra. María Laura Arias de la Facultad de Microbiología y a la Bach. Isabel Mora del Laboratorio de Biotecnología del CIGRAS gracias por el apoyo iii Índice general Dedicatoria................................................................................................................
    [Show full text]
  • UPLC-QTOF-MS Analysis of Extracts from the Leaves of Pouteria Caimito (Sapotaceae) and Their Antioxidant Activity
    Journal of Biosciences and Medicines, 2019, 7, 92-101 http://www.scirp.org/journal/jbm ISSN Online: 2327-509X ISSN Print: 2327-5081 UPLC-QTOF-MS Analysis of Extracts from the Leaves of Pouteria caimito (Sapotaceae) and Their Antioxidant Activity Lorrayne Clemente Ribeiro de Sousa1, Almir Ribeiro de Carvalho Junior2, Mario Geraldo de Carvalho3, Tania Maria Sarmento da Silva4, Rafaela Oliveira Ferreira1* 1Universidade Federal do Tocantins, Gurupi, Brazil 2Instituto Federal de Santa Catarina, Criciúma, Brazil 3Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil 4Universidade Federal Rural de Pernambuco, Recife, Brazil How to cite this paper: de Sousa, L.C.R., Abstract de Carvalho Junior, A.R., de Carvalho, M.G., da Silva, T.M.S. and Ferreira, R.O. This study describes the phytochemical profile and antioxidant activity of an (2019) UPLC-QTOF-MS Analysis of Ex- extract from the leaves of Pouteria caimito (Sapotaceae). The extract in etha- tracts from the Leaves of Pouteria caimito nol was obtained by maceration at room temperature and subjected to the (Sapotaceae) and Their Antioxidant Activ- ity. Journal of Biosciences and Medicines, liquid-liquid partition to obtain fractions in hexane and ethyl acetate. Ster- 7, 92-101. oids, triterpenes, saponins, alkaloids and flavonoids were identified by the https://doi.org/10.4236/jbm.2019.73009 phytochemical prospection of extracts and fractions from the leaves. The analysis of the ethyl acetate fraction by UPLC-QTOF-MS allowed us to iden- Received: January 31, 2019 Accepted: March 22, 2019 tify eight triterpenes, namely, euscaphic acid (1), hyptadienic acid (2), Published: March 25, 2019 betulinic acid (3), oleanolic acid (4), ursolic acid (5), 3β-(O-p-coumaroyl)- alphitolic acid (6), 3β-(O-p-coumaroyl)-maslinic acid (7) and 3β-(O-p-cou- Copyright © 2019 by author(s) and maroyl)-2-hydroxy-urs-12-en-28-oic acid (8).
    [Show full text]
  • What's in Your Tropical Fruit?1
    FSHN 07-08 What’s in Your Tropical Fruit?1 Susan S. Percival and Brooke Findley2 Florida ranked ninth in the nation for total cash receipts from fruit, with nearly 28% of this from field crops and other crops not including vegetables. Additionally, Florida’s top export is fruit; in 2003, Florida ranked second in the nation in fruit exports (3). Since the production of tropical fruits is an important part of the economy of the state, highlighting the nutritional benefits of these fruits enhances their marketability and appeal. However, the lack of comprehensive information about the nutritional properties of these foods presents a challenge. The purpose of this publication is to evaluate the current information available on the nutrient composition of Figure 1. Tropical Fruit Day (2005). tropical fruits. The nutrient information (amounts of fiber, Credits: UF/IFAS Vitamin A, Vitamin C, folate, potassium, calcium and iron) for the tropical fruits examined was compiled from the Introduction USDA National Nutrient Database for Standard Reference Fruits are abundant in nutrients, such as fiber, potas- (4, 5) (see Table 1). These values were then compared to the sium, folate, and Vitamin C. Moreover, they also contain daily reference values for food labeling (6) and evaluated carotenoids and polyphenols, which act as antioxidants in relation to the percent provided per serving. According within the body. Eating large amounts of plant-based foods to the FDA, a “good” source of a nutrient provides 10-19% has been associated with lowered rates of cardiovascular of the daily reference value, while an “excellent” source disease (1, 2) and with decreased risk of cancer and stroke provides 20% of the daily reference value (6, 7).
    [Show full text]