Precambrian Petroleum Systems

Total Page:16

File Type:pdf, Size:1020Kb

Precambrian Petroleum Systems exploration & production Global Climate, the Dawn of Life and the Earth’s Oldest Petroleum Systems Jonathan Craig Eni Upstream & Technical Services Milan, Italy Societe Geologique de France, Paris www.eni.it Thursday 26th November 2015 Global Climate, Glaciations and Source Rocks in North Africa PRECAMBIAN PETROLEUM SYSTEM PALEOZOIC PETROLEUM SYSTEM MESOZOIC PETROLEUM SYSTEM Gas/Cond . Triassic Oil Illizi/Oued Mya Sirte 60 Ice extent data ? Ahnet/Murzuq Suez Pelagian in part after 0 50 Crowell, 1999 Hassi ‘R Mel 10 40 Total Mesozoic Sirte 20 30 and Tertiary- Hassi (south) Suez sourced reserves = 57 700 Ma 635 Ma Messaoud Lat.) - - Pelagian ° 30 Illizi/Ghadames 20 BBOE Abu Ahnet Total Paleozoic- Gharadiq 40 Illizi BBOE reservesned to sourceage sourced reserves = 50 BBOE 10 C Ord S Dev. Carb P Tr. Jur. Cret. Tert. Ice ExtentIce ( 50 . Total Precambian- sourced reserves = ? 60 Carbo - Source rock data Global climate change based Marinoan Glaciation 665 Glaciation Marinoan Sturtian 7040 Sturtian Glaciation Modified from On geological data as Permo Glaciations Macgregor, 1996 Tertiary Glaciation Gaskiers Event Summarized by Coppold and Powell (2000) exploration & production 2 //Dise/Pedini/Archivio_57/ Mesoproterozoic-Neoproterozoic Timescale and Key Events Ice Extent (°Lat ) 90° 60° 30° 0° 400 443.7 Ma ORDOVICIAN More organicburial Less organicburial 488.3 Ma GONDWANA 500 CAMBRIAN Gondwana Formed 542 Ma 542 Ma Ediacaran Radiation° by 540 - 530 Ma EDIACARAN Gaskiers Event (c. 580 Ma) West Gondwana 600 Acraman impact, assembled by 600 Ma 630 Ma VENDIAN Australia( c. 610 Ma) Marinoan Glaciat ion 665 – 635 Ma SNOWBALL EARTH 700 700 Ma PERIOD St ur t ian Glaciat ion 740 – 700 Ma CRYOGEN IAN 740 Ma740 Ma Break - up of RODINIA 800 (Superplume Event ?) LAT E 830 Ma 850 Ma RIPH EAN 900 900 Ma NEOPROTEROZOIC NEOPROTEROZOICTONIAN TONIAN Formation of 10 5 0 - 5 - 10 RODINIA δ 13 (C % VPDB) 1000 1000 Ma 1000 Ma First multicellular Glaciation organisms EA RLY ( c. 1000 Ma) MESOPROT EROZ OIC Negative d13C excursion RIPH EAN In part after knoll, 1996, Etienne et at., 2006 Gradstein et at, 2004 Harland et at, 1987 exploration & production 3 //Dise/Pedini/Archivio_57/ Global Precambrian Petroleum Systems RUSSIA VOLGA - URAL PROVINCE POTWAR BASIN and MIJALAR BASIN, PAKISTAN SIBERIA LENA-TUNGUSKA PROVINCE U.S.A. NONESUCH, MICHIGAN SIRTE/CYRENAICA RAJASTHAN, INDIA LIBYA NORTH AFRICA CHINA TINDOUF BASIN, MOROCCO AND ALGERIA VINDHYAN BASINS NORTH AFRICA CHAMBAL VALLEY, INDIA TAOUDENNI, MALI,MAURITANIA AND ALGERIA MIDDLE EAST MIDDLE EAST SAUDI ARABIA OMAN KUFRA BASIN LIBYA ARGENTINA, BOLIVIA and PARAGUAY BRAZIL Potential SAO FRANCISCO BASIN Proven AUSTRALIA AMADEUS, OFFICER AND MCARTHUR BASINS after Craig et al., 2009. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society Special Publication 326 exploration & production 4 //Dise/Pedini/Archivio_57/ Archaean (pre - 2500 Ma) The ‘Dawn of Life’ exploration & production 5 //Dise/Pedini/Archivio_57/ Archaean: Filamentous hyperthermophile cyanobacteria? 3465Ma Apex Chert, Pilbara Supergroup, Western Australia A PORT HEDLAND C 1 2 3 W.A. Towers Fm. 20°30’S and Apex Basalt FOSSILIFEROUS BEDDED CHERTS, EARLY ARCHEAN APEX BASALT 4 6 0 20 40 km 22°00’ Show MARBLE BAR 119°00’E 119°30’ 9 10 11 STROMATOLITE 5 B Pilbara MICROFOSSILS AGE 13 Supergroup (Ca) δ C (per mil) WHIM CREEK 30 -3.0 GROUP -30 -20 -10 0 = Organic carbon 25 = Carbonate carbon 7 GORGE 12 13 14 CREEK H/C=0.09 (N=1) GROUP 20 15 WYMAN FM -3.35 EURO BASALT PANORAMA FM -3.40 Thickness (km) Thickness APEX BASALT 10 TOWEAS FM 8 DUFTER FORMATION -3.47 TOWERS H/C=0.25 5 (0.30 to 0.16, N=3) 15 MOUNT ADA BASALT MEPHEE FM -3.50 WARRAWOONA GROUP NORTH STAR -30 -20 -10 0 0 BASALT exploration & production 6 //Dise/Pedini/Archivio_57/ Grand Prismatic Spring, Yellowstone National Park exploration & production 7 //Dise/Pedini/Archivio_57/ Oscillatoria – a modern cyanobacteria Oscillatoria is able to move by sliding over surfaces. These three images were taken over a period of two minutes and show two filaments moving towards each other. (from Sheehan et al., 2005). exploration & production 8 //Dise/Pedini/Archivio_57/ Palaeoproterozoic (2500-1600 Ma): The world’s oldest petroleum source rocks exploration & production 9 //Dise/Pedini/Archivio_57/ Palaeoproterozoic ‘Shungite’, Lake Onega, N.W. Russia (c. 2000 Ma) A B C D E F I G H after Melezhik et al., 2004. exploration & production 10 //Dise/Pedini/Archivio_57/ Palaeoproterozoic Succession, Lake Onega Area, North West Russia B Members A & B C LITHOSTRATIGRAPHIC UNIT Thickness, m m 0 40 Layer 9 Kondopozhskaya Layer 8 & Vashezerskaya, 700 100 Kalevi Layer 7 30 Layer 6 Suisarskaya, 400 200 M e m b e r B be m e r M Layer 5 20 Layer 4 300 upper Zaonezhskaya, Ludikovi 650 10 400 Layer 3 lower Zaonezhskaya, m 0 200 500 M e m b e r A be m e r M Layer 2 Layer 1 Legend Tulomozerskaya, 800 Legend for Members A & B Shungite-bearing chert Jatuli Dolostone Shungite-bearing dolostone Chert Semilustrous and semimat shungite-rich rock Medvezh., 70 Siltstone Layer-shungite (97 to 99 wt. % C Jangozers., 50 Basaltic tuff & tuffite Shungite-bearing volcanoclastic greywacke Palozerskaya, 400 Layers of shungite Carbonate megaconcretions and concretionary beds rock (numbered) Sarioli Archaean basement after Melezhik et al., 2004. exploration & production 11 //Dise/Pedini/Archivio_57/ Mesoproterozoic (1600-1000 Ma): The world’s oldest live oil, the world’s oldest commercial oil and gas fields - and ‘the dullest time in Earth history’ PESGB Lecture, Burlington House, London Tuesday 8th October 2013 exploration & production //Dise/Pedini/Archivio_57/ The Great Oxygenation Event: 2450 – 2200 Ma These three images taken over a period of five minutes show the formation of an oxygen bubble produced as a result of photosynthesis by cyanobacteria (from Sheehan et al., 2005) exploration & production 13 //Dise/Pedini/Archivio_57/ Mesoproterozoic Geology, McArthur Basin, Northern Australia: Velkerri Formation c. 1417/1361Ma 14°00’’ A BMR Phanerozoic cover B URAPUNGA Roper Chambers River Fm 1 Group Maiwok Subgroup (dolerites Not Iower Roper Group Shown) McMinn Fm 1429my McArthur and Nathan Groups and equivalents Fe Moroak Sst Mbr. M 3 Tawallah Group ROPER GROUP Bmr Urapunga Velkerri Fm M Wells S Friendship 1 Bessie Cr Sst 4 5 6 Corcoran Fm Bmr Urapunga Bmr Urapunga 2000m Fe Lady Penrhyn 1 Scarborough 1 GULF 2 Shea 1 Abner Sst Mataranka OF 1100 - 1280my Borrowdale 2 Crawford Fm CARPENTARIA Mainoru Fm Limmen Sst Dungaminnie Fm GROUP NATHAN Balbirini Dolomite Altree 2 4000m Walton 2 Looking Glass and Amos Fms M McManus 1 BATTEN Stretton Sst Yalco Fm S Borrologia GROUP McARTHUR AMOCO Lynott Fm Caranbirini Mbr S Broadmere 1 Reward Dolomite HYC Rb/Zn deposit Barney Creek Fm S TROUGH 1690my 6000m Jamison 1 GLYDE Teena Dolomite M 0 100km REGION Emmerugga Dolomite 17°00’’ 133°00’ 136°00’’ exploration & production 14 //Dise/Pedini/Archivio_57/ Precambrian Stratigraphy & Petroleum Systems of East Siberia International Russian/Siberian Baykit Anticlise 80° 100° 120° 140° Irkineeva Katanga Stratigraphic Chart Stratigraphic Chart Uplift Tokhomo- Yurubchen- Turukhan- Saddle Series Stage Series Stage Olenchima Tayga Kuyumba LAPTEV Batyrbayan Stage 10492 Aksayan SEA Stage 9 Furongian 496 Late Saskian Evenkiya Fm Paibian501 Ayusokkanian Guzhangian 503 Mayan 70° Series 3 Durmian 507 Middle Amgan Zaledeevo Fm Stage 5 510 C A M B R I A A N B R I C A M C A M B R I A A N B R I C A M Stage 4 Toyonian Series 2 517 Agalevo Fm SIBERIAN Botomian ? Stage 3 521 Klimino Fm Early Atdabanian ? PLATFORM Stage 2 Usol’e Irkineeva Fm Usol’e Fm Usol’e Fm Terre- 535 Tommotian neuvian Nemakit- Ostrovnov Fm Tetere Fm Tetere Fm Fortunian Dstrovnoy ? Soba Fm Soba Fm 542 Daldynian Moshakov Fm Tokhoma Fm Katanga Fm Katanga Fm 542 Ma 617+17 L a t e Ediacarian Chistyakov Fm Oskoba Fm 620 Oskoba Fm ? 643+7 Ediacaran Vanavara Fm Vanavara Fm V V e d a i n n Aleshino Fm E ay r l Ta s e e vo 646+14 630 650 630 Ma 650 Ma ? Nepa- Botuobuya Cryogenian Baykalian 60° Baykit Anteclise 850 850 Oslyanka YR 850 Ma Anteclise Dashkino Fm Iremakan Fm N. Angara Fm Tokura Fm L a t e C A M B R I A A N B R I C A M N E O P R O T E R O Z O I I C O Z O R E T O R P O E N Dadykta Fm Vongol’dinskaya Fm Sery Klyuch Fm Rassolka Fm Lakhanidian Tonian Yukten Fm Shuntara Fm Oil/gas field Kopchera Fm R R pi h e a n Kuyumba Fm Potoskuy Fm 1000 1000 Tu n i k g u s ? Dolgokta Fm Margin of 1000 Ma Alad’in Fm Yuribchen Fm Siberian Kartochka Fm Madra/Vedreshe Fm Platform Stenian Kerpulian Pogoryuy Fm Delingdeken (Zelendukon) Fm 1100 1200 Distribution of M M i d d l e Aimchanian Pit Uderey Fm Sukhoy MESOPROTEROZOIC 1350 500 km Cambrian salt Lake Baykal after Mel’nikov, 2005, and Timoshina, 2005. Irkutsk correlation accepted by authors proven oil and gas deposits YR = Yenisey Ridge correlation suggested by authors small gas deposits unconformity TOC up to 15% (Timoshina, 2005) hiatus exploration & production 15 //Dise/Pedini/Archivio_57/ Geological Section across the Yenisey Ridge and the Baykit Anticlise, East Siberia exploration & production 16 //Dise/Pedini/Archivio_57/ Late Mesoproterozic to Early Neoproterozoic (c. 1150-800 Ma) The Rise and Fall of Stromatolites . and their role in the world’s oldest commercial oil and gas fields Atar Group, Taoudenni Basin, West Africa (c. 1100 Ma ?) Archaeozoon Saint John New Brunswich Canada exploration & production 17 //Dise/Pedini/Archivio_57/ Geology of the northeast part of the Taoudenni Basin in northwest Africa exploration & production 18 //Dise/Pedini/Archivio_57/ Mesoproterozoic- Neoproterozoic Succession , Abolag-1 Well, Taoudenni Basin, Mali Dolerite ( Trias Jurassique ) • Max TOC.
Recommended publications
  • Reconciling Proxy Records and Models of Earth's Oxygenation During the Neoproterozoic and Palaeozoic
    This is a repository copy of Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/165529/ Version: Accepted Version Article: Tostevin, R and Mills, BJW orcid.org/0000-0002-9141-0931 (2020) Reconciling proxy records and models of Earth's oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10 (4). 20190137. ISSN 2042-8901 https://doi.org/10.1098/rsfs.2019.0137 © 2020 The Author(s). This is an author produced version of an article published in Interface Focus. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Reconciling proxy records and models of E oxygenation during 2 the Neoproterozoic and Palaeozoic 3 Rosalie Tostevin1 and Benjamin J. W. Mills2 4 1Department of Geological Sciences, University of Cape Town, Rondebosch, Cape Town, 5 South Africa.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Soils in the Geologic Record
    in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction.
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 366 The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Biodiversiteten av eukaryotiska mikrofossil med organiska cellväggar från Visingsö- gruppen (tonian), Sverige Corentin Loron ISSN 1650-6553 Copyright © Corentin Loron Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2016 Abstract The Biodiversity of Organic-Walled Eukaryotic Microfossils from the Tonian Visingsö Group, Sweden Corentin Loron The diversification of unicellular, auto- and heterotrophic protists and the appearance of multicellular microorganisms is recorded in numerous Tonian age successions worldwide, including the Visingsö Group in southern Sweden. The Tonian Period (1000-720 Ma) was a time of changes in the marine environments with increasing oxygenation and a high input of mineral nutrients from the weathering continental margins to shallow shelves, where marine life thrived. This is well documented by the elevated level of biodiversity seen in global microfossil
    [Show full text]
  • 'Great Unconformity' on the North China Craton Using New Detrital
    1 Measuring the ‘Great Unconformity’ on the North China Craton using new 2 detrital zircon age data 3 4 Tianchen He1*, Ying Zhou1, Pieter Vermeesch1, Martin Rittner1, Lanyun Miao2, Maoyan Zhu2, Andrew 5 Carter3, Philip A. E. Pogge von Strandmann1,3 & Graham A. Shields1 6 7 1 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 8 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and 9 Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 10 3 Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, 11 London WC1E 7HX, UK 12 *Corresponding author (e-mail: [email protected]) 13 14 Abstract: New detrital zircon ages confirm that Neoproterozoic strata of the southeastern North China 15 Craton (NCC) are mostly of early Tonian age, but that the Gouhou Formation, previously assigned to 16 the Tonian, is Cambrian in age. A discordant hiatus of >150-300 million years occurs across the NCC, 17 spanning most of the late Tonian, Cryogenian, Ediacaran and early Cambrian periods. This widespread 18 unconformable surface is akin to the ‘Great Unconformity’ seen elsewhere in the world, and highlights 19 a major shift in depositional style from largely erosional, marked by low rates of net deposition, during 20 the mid-late Neoproterozoic to high rates of transgressive deposition during the mid-late Cambrian. 21 Comparison between age spectra for southeastern NCC and northern India are consistent with a 22 provenance affinity linking the NCC and East Gondwana by ~510 Ma. 23 24 Supplementary material: The full sample list and U-Pb data are available at: 25 26 It has long been recognized that the traditional Precambrian–Cambrian (Ediacaran–Cambrian) 27 boundary interval is characterized worldwide by low rates of deposition and/or a major unconformity, 28 known as the ‘Great Unconformity’ (Brasier & Lindsay 2001, Peters & Gaines 2012).
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2018/08 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon Erathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ± 0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.781 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian Callovian 1000 Quaternary Gelasian 166.1 ±1.2 2.58 Bathonian 382.7 ±1.6 Stenian Middle 168.3 ±1.3 Piacenzian Bajocian 170.3 ±1.4 Givetian 1200 Pliocene 3.600 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Devonian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- 2050 Burdigalian Hettangian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 27.82 Gorstian
    [Show full text]
  • International Chronostratigraphic Chart
    INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2014/02 numerical numerical numerical Eonothem numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age Erathem / Era System / Period GSSP GSSP age (Ma) GSSP GSSA EonothemErathem / Eon System / Era / Period EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) / Eon GSSP age (Ma) present ~ 145.0 358.9 ± 0.4 ~ 541.0 ±1.0 Holocene Ediacaran 0.0117 Tithonian Upper 152.1 ±0.9 Famennian ~ 635 0.126 Upper Kimmeridgian Neo- Cryogenian Middle 157.3 ±1.0 Upper proterozoic Pleistocene 0.781 372.2 ±1.6 850 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian 166.1 ±1.2 Quaternary Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 Middle 387.7 ±0.8 Meso- Zanclean Aalenian proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 7.246 Toarcian Calymmian Tortonian 182.7 ±0.7 Emsian 1600 11.62 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Langhian Sinemurian Proterozoic Neogene 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Hettangian 2050 Burdigalian 201.3 ±0.2 419.2 ±3.2 proterozoic 20.44 Mesozoic Rhaetian Pridoli Rhyacian Aquitanian 423.0 ±2.3 23.03 ~ 208.5 Ludfordian 2300 Cenozoic Chattian Ludlow 425.6 ±0.9 Siderian 28.1 Gorstian Oligocene Upper Norian 427.4 ±0.5 2500 Rupelian Wenlock Homerian
    [Show full text]
  • 2009 Geologic Time Scale Cenozoic Mesozoic Paleozoic Precambrian Magnetic Magnetic Bdy
    2009 GEOLOGIC TIME SCALE CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST. HIST. ANOM. ANOM. (Ma) CHRON. CHRO HOLOCENE 65.5 1 C1 QUATER- 0.01 30 C30 542 CALABRIAN MAASTRICHTIAN NARY PLEISTOCENE 1.8 31 C31 251 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 70.6 254 2A PIACENZIAN 32 C32 L 630 C2A 3.6 WUCHIAPINGIAN PLIOCENE 260 260 3 ZANCLEAN 33 CAMPANIAN CAPITANIAN 5 C3 5.3 266 750 NEOPRO- CRYOGENIAN 80 C33 M WORDIAN MESSINIAN LATE 268 TEROZOIC 3A C3A 83.5 ROADIAN 7.2 SANTONIAN 271 85.8 KUNGURIAN 850 4 276 C4 CONIACIAN 280 4A 89.3 ARTINSKIAN TONIAN C4A L TORTONIAN 90 284 TURONIAN PERMIAN 10 5 93.5 E 1000 1000 C5 SAKMARIAN 11.6 CENOMANIAN 297 99.6 ASSELIAN STENIAN SERRAVALLIAN 34 C34 299.0 5A 100 300 GZELIAN C5A 13.8 M KASIMOVIAN 304 1200 PENNSYL- 306 1250 15 5B LANGHIAN ALBIAN MOSCOVIAN MESOPRO- C5B VANIAN 312 ECTASIAN 5C 16.0 110 BASHKIRIAN TEROZOIC C5C 112 5D C5D MIOCENE 320 318 1400 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 326 6 C6 APTIAN 20 120 1500 CALYMMIAN E 20.4 6A C6A EARLY MISSIS- M0r 125 VISEAN 1600 6B C6B AQUITANIAN M1 340 SIPPIAN M3 BARREMIAN C6C 23.0 345 6C CRETACEOUS 130 M5 130 STATHERIAN CARBONIFEROUS TOURNAISIAN 7 C7 HAUTERIVIAN 1750 25 7A M10 C7A 136 359 8 C8 L CHATTIAN M12 VALANGINIAN 360 L 1800 140 M14 140 9 C9 M16 FAMENNIAN BERRIASIAN M18 PROTEROZOIC OROSIRIAN 10 C10 28.4 145.5 M20 2000 30 11 C11 TITHONIAN 374 PALEOPRO- 150 M22 2050 12 E RUPELIAN
    [Show full text]
  • A Nitrogen Isotope Perspective Magali Ader, Pierre Sansjofre, Galen Halverson, Vincent Busigny, Ricardo I
    Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective Magali Ader, Pierre Sansjofre, Galen Halverson, Vincent Busigny, Ricardo I. F. Trindade, Marcus Kunzmann, Afonso C. R. Nogueira To cite this version: Magali Ader, Pierre Sansjofre, Galen Halverson, Vincent Busigny, Ricardo I. F. Trindade, et al.. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth and Planetary Science Letters, Elsevier, 2014, 396, pp.1 - 13. 10.1016/j.epsl.2014.03.042. hal-01388690 HAL Id: hal-01388690 https://hal.archives-ouvertes.fr/hal-01388690 Submitted on 27 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A 2 nitrogen isotope perspective 3 4 Magali Adera,*, Pierre Sansjofrea,b,c, Galen P. Halversond, Vincent Busignya, Ricardo I.F. 5 Trindadec, Marcus Kunzmannd, Afonso C.R. Nogueirae 6 a Institut de Physique du Globe de Paris, Sorbonne Paris Cité, University Paris Diderot, UMR 7 7154 CNRS, 1 rue Jussieu, 75238 Paris, France 8 b Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, 9 Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo, Brazil 10 c now at Laboratoire Domaines Océaniques, Université de Bretagne Occidentale, UMR 6538, 11 29820 Plouzané, France 12 d Department of Earth and Planetary Sciences/Geotop, 13 McGill University, 3450 University Street, Montréal, QC, Canada H3A 0E8.
    [Show full text]
  • Neoprot. Archean Phanerozoic Paleoproterozoic Mesoprot. Mari- Noan Tonian Sturtian Ediac. Cryogenian Proterozoic Glacial
    SCIENCE ADVANCES | RESEARCH ARTICLE Solar f lux (wrt present) follow the current informal international usage, wherein “Sturtian” 0.9 1.01.1 1.2 1.3 and “Marinoan” identify the cryochron and its immediate aftermath, including the respective postglacial cap-carbonate sequences.] The nonglacial interlude separating the cryochrons was 9 to 19 million years e <10 My d 90° (My) in duration (Fig. 2A). The worldwide distribution of late Precambrian glacial deposits f Present (Fig. 4) became evident in the 1930s (25, 54, 55), but only recently has 60° their synchroneity been demonstrated radiometrically (32, 56–65). a ~2 ky Previously, geologists were divided whether the distribution of gla- 30° cial deposits represents extraordinary climates (29, 66)ordiachronous products of continental drift (67, 68). The recognition that a panglacial state might be self-terminating Ice line latitudeIce Eq b c (69), due to feedback in the geochemical carbon cycle, meant that its >10 My occurrence in the geological past could not be ruled out on grounds of irreversibility. “If a global glaciation were to occur, the rate of silicate 0.1 1 10 100 1000 weathering should fall very nearly to zero (due to the cessation of nor- PCO (wrt present) mal processes of precipitation, erosion, and runoff), and carbon dioxide 2 Downloaded from should accumulate in the atmosphere at whatever rate it is released Fig. 1. Generic bifurcation diagram illustrating the Snowball Earth hysteresis. from volcanoes. Even the present rate of release would yield 1 bar of Ice-line latitude as a function of solar or CO2 radiative forcing in a one-dimensional carbon dioxide in only 20 million years.
    [Show full text]