1 Measuring the ‘Great Unconformity’ on the North China Craton using new 2 detrital zircon age data 3 4 Tianchen He1*, Ying Zhou1, Pieter Vermeesch1, Martin Rittner1, Lanyun Miao2, Maoyan Zhu2, Andrew 5 Carter3, Philip A. E. Pogge von Strandmann1,3 & Graham A. Shields1 6 7 1 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK 8 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and 9 Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 10 3 Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, 11 London WC1E 7HX, UK 12 *Corresponding author (e-mail:
[email protected]) 13 14 Abstract: New detrital zircon ages confirm that Neoproterozoic strata of the southeastern North China 15 Craton (NCC) are mostly of early Tonian age, but that the Gouhou Formation, previously assigned to 16 the Tonian, is Cambrian in age. A discordant hiatus of >150-300 million years occurs across the NCC, 17 spanning most of the late Tonian, Cryogenian, Ediacaran and early Cambrian periods. This widespread 18 unconformable surface is akin to the ‘Great Unconformity’ seen elsewhere in the world, and highlights 19 a major shift in depositional style from largely erosional, marked by low rates of net deposition, during 20 the mid-late Neoproterozoic to high rates of transgressive deposition during the mid-late Cambrian. 21 Comparison between age spectra for southeastern NCC and northern India are consistent with a 22 provenance affinity linking the NCC and East Gondwana by ~510 Ma. 23 24 Supplementary material: The full sample list and U-Pb data are available at: 25 26 It has long been recognized that the traditional Precambrian–Cambrian (Ediacaran–Cambrian) 27 boundary interval is characterized worldwide by low rates of deposition and/or a major unconformity, 28 known as the ‘Great Unconformity’ (Brasier & Lindsay 2001, Peters & Gaines 2012).