Survey of Energy Resources
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Oil Shale in Jordan 1 2.1
MINISTRY OF ENERGY AND MINERAL RESOURCES Mineral Status and Future Opportunity OIL SHALE Prepared By Dr Jamal Alali Geo. Abdelfattah Abu Salah Dr. Suha M. Yasin Geo. Wasfi Al Omari Edited By Geo. Julia Sahawneh Geo. Marwan Madanat 2014 Oil Shale Ministry of Energy and Mineral Resources, 2014 CONTENTS List of Contents I List of Figures II List of Tables II 1. Introduction 1 2. Geology of Oil Shale in Jordan 1 2.1. Origin and Definition 1 2.2. Mineralogy and Chemistry of Oil Shale 2 2.3. Uses and Industrial Applications of Oil Shale 3 3. Oil Shale Deposits 3 3.1. El-Lajjun Deposit 4 3.2. Sultani Oil Shale Deposit 6 3.3. Attarat Umm Ghudran Oil Shale Deposit 8 3.4. Wadi Maghar Oil Shale Deposit 9 3.5. Khan Az Zabib Deposit 10 3.6. Jurf Ed Darawish Deposit 11 3.7. Siwaqa Deposit 11 3.8. El Hasa Deposit 12 3.9. Eth Thamad/ Madaba Area 4. Summary of Previous Technical Activities 12 5. Mining Aspects 14 5.1. Overburden 14 5.2. Ore Body of the Oil Shale 14 5.3. Reserves 14 5.4. Mining Method 15 6. Oil shale Technologies and Exploitation Worldwide 17 6.1. Crude Oil Production 17 6.2. Power Generation 18 7. Investment Opportunities and Outlook 19 7.1. Crude Oil Production 20 7.2. Direct Combustion 20 8. References 23 I Oil Shale Ministry of Energy and Mineral Resources, 2014 List of Figures Figure (1): Location map of the major oil shale deposits. 5 Figure (2): Oil Shale outcrop in El-Lajjun deposit. -
Oil Shale and Tar Sands
Fundamentals of Materials for Energy and Environmental Sustainability Editors David S. Ginley and David Cahen Oil shale and tar sands James W. Bunger 11 JWBA, Inc., Energy Technology and Engineering, Salt Lake City, UT, USA 11.1 Focus 11.2 Synopsis Tar sands and oil shale are “uncon- Oil shale and tar sands occur in dozens of countries around the world. With in-place ventional” oil resources. Unconven- resources totaling at least 4 trillion barrels (bbl), they exceed the world's remaining tional oil resources are characterized petroleum reserves, which are probably less than 2 trillion bbl. As petroleum becomes by their solid, or near-solid, state harder to produce, oil shale and tar sands are finding economic and thermodynamic under reservoir conditions, which parity with petroleum. Thermodynamic parity, e.g., similarity in the energy cost requires new, and sometimes of producing energy, is a key indicator of economic competitiveness. unproven, technology for their Oil is being produced on a large commercial scale by Canada from tar sands, recovery. For tar sands the hydrocar- and to a lesser extent by Venezuela. The USA now imports well over 2 million barrels bon is a highly viscous bitumen; for of oil per day from Canada, the majority of which is produced from tar sands. oil shale, it is a solid hydrocarbon Production of oil from oil shale is occurring in Estonia, China, and Brazil albeit on called “kerogen.” Unconventional smaller scales. Importantly, the USA is the largest holder of oil-shale resources. oil resources are found in greater For that reason alone, and because of the growing need for imports in the USA, quantities than conventional petrol- oil shale will receive greater development attention as petroleum supplies dwindle. -
Organic-Rich Shale of the United States and World Land Areas Organic-Rich Shale of the United States and World Land Areas
GEOLOGICAL SURVEY CIRCULAR 523 Organic-Rich Shale of the United States and World Land Areas Organic-Rich Shale of the United States and World Land Areas By Donald C. Duncan and Vernon E. Swanson Geological Survey Circular 523 Washington 7965 United States Department of the Interior STEWART L. UDALL, Secretary Geological Survey William T. Pecora, Director REPRINTED 1966 Free on application to the U.S. Geological Survey, Washington, D.C. 20242 CONTENTS Page Page Abstract----- _ ____________ _ ____ 1 Shale oil resources Continued Introduction- ______________ _ _____ 1 North America Continued Acknowledgments __ ____________ _ 2 United States Continued Previous summaries______________ 2 Shale associated with coal ______ 14 Definitions _______________________ 2 Other shale deposits _ ______ 15 Organic -rich shale _____________ 2 Total shale oil resources.---- 16 Oil shale __ ____ __ ___ __ 3 Other areas in North America ____ 16 Other terms ___________________ 3 Africa-___--__-_-_----_--_----_--- 17 Types of deposits_________________ 4 Total shale oil resources of Potential energy, oil, or gas yield of Africa _______________________ 17 the organic matter in shale ______ 4 Asia _________ _ _____ ___ 19 Status of the shale industry ________ 5 China __________________ _ 19 World production _______________ 5 Israel, Jordan, and Syria _________ 19 Byproducts ____________________ 5 Siberia _________________________ 20 Activities in the United States ____ 5 Thailand and Burma-_____________ 20 Classification of resources ________ 5 Turkey ________ _____ -
World Energy Trilemma Index 2018
World Energy Trilemma Index 2018 In Partnership with OLIVER WYMAN ABOUT THE WORLD ENERGY COUNCIL ABOUT THE ENERGY TRILEMMA INDEX The World Energy Council is the principal impartial The World Energy Council considers energy network of energy leaders and practitioners promoting sustainability to be defined by three core dimensions– an affordable, stable and environmentally sensitive Energy Security, Energy Equity, and Environmental energy system for the greatest benefit of all. Sustainability. Together, they constitute a ‘trilemma’, and achieving high performance on all three dimensions Formed in 1923, the Council is the UN accredited global entails complex interwoven links between public and energy body, representing the entire energy spectrum, private actors, governments and regulators, economic with over 3,000 member organisations in over 90 and social factors, national resources, environmental countries, drawn from governments, private and state concerns, and individual consumer behaviours. corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies The World Energy Trilemma Index, prepared annually by hosting high-level events, including the World Energy by the World Energy Council in partnership with global Congress and publishing authoritative studies, and work consultancy Oliver Wyman, along with the Global Risk through our extensive member network to facilitate the Center of its parent Marsh & McLennan Companies since world’s energy policy dialogue. 2010, is a comparative ranking of 125 countries’ energy systems. It provides an assessment of a country’s energy Further details at www.worldenergy.org system performance, reflecting balance and robustness and @WECouncil in the three trilemma dimensions. Published by the World Energy Council 2018 Access the complete Index results and use the interactive Copyright © 2018 World Energy Council. -
Strategic Significance of America's Oil Shale Resource
Strategic Significance of America’s Oil Shale Resource Volume II Oil Shale Resources Technology and Economics Office of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of Energy Washington, D.C. March 2004 Strategic Significance of America’s Oil Shale Resource Volume II Oil Shale Resources, Technology and Economics March 2004 Final Report Prepared for: Office of Deputy Assistant Secretary for Petroleum Reserves The Office of Strategic Petroleum Reserves U.S. Department of Energy Work Performed Under: Contract DE-AC01-03FE67758 Task Order 6 Prepared by: AOC Petroleum Support Services, LLC Washington, D.C. Principal Authors: Harry R. Johnson, INTEK, Inc. Peter M. Crawford, INTEK, Inc. James W. Bunger, JWBA, Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any or their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, trade- mark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, rec- ommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Volume II – Oil Shale Resources Technology and Economics Table of Contents Foreword .........................................................................................................................iv Acknowledgments ......................................................................................................... -
Environmental Review of QER Pty Ltd's Oil Shale Technology Demonstration Plant, Gladstone, Queensland January 2013
Environmental Review of QER Pty Ltd's Oil Shale Technology Demonstration Plant, Gladstone, Queensland January 2013 Prepared by: Environmental Services & Regulation, Department of Environment and Heritage Protection © The State of Queensland (Department of Environment and Heritage Protection) 2013 Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. February 2013 Contents Executive summary ......................................................................................................................................................1 1. Introduction ...............................................................................................................................................................2 1.1 Queensland Government 2008 decision on oil shale .........................................................................................2 1.2 What is oil shale? ................................................................................................................................................2 1.3 Where is oil shale found in Queensland? ...........................................................................................................3 -
Microscopic Study on the Composites of Wood and Polypropylene*1
「森林総合研究所研究報告」(Bulletin of FFPRI),Vol. 1, No. 1 (No.382), 115-122, March, 2002 論 文(Original Article) Microscopic Study on the Composites of Wood and Polypropylene*1 FUJII Tomoyuki*2 and QIN Te-fu *3 Abstract Optical and scanning electron microscopies coupled with a thin-sectioning method and a chemical treatment to remove cell wall material were adopted to investigate morphologically the dispersion of wood fillers and the interface between the wood and polypropylene (PP) matrices in injection-molding composites. Wood fillers were well dispersed in PP matrix with a tendency toward longitudinal and concentric orientation. The interface between wood and PP was well illustrated by the chemical digestion method. It was demonstrated with this method that PP can penetrate into macro-cavities such as fiber lumina inside wood particles through cracks of inter- and intra-wall fractures and comprises a three-dimensional network within the particles and also connecting to PP matrix outside. Wood fillers were always completely isolated and covered by PP probably owing to their high wetability at their interface, although this did not directly result in stiff chemical bonding. This suggests that the chemical bonding of wood fillers and PP matrix is more important for the improvement of the adhesion properties than the surface compatibility. Keywords: composite wood, polypropylene, morphology, SEM, optical microscopy Introduction is that the resulting composites usually have a significantly reduced impact and tensile strength due to poor adhesion There has recently been a dramatic increase of interest between the hydrophilic filler material and hydrophobic in using biomass such as wood fibers, oil palm fibers and thermoplastic. -
HISTORY of WESTERN OIL SHALE HISTORY of WESTERN OIL SHALE
/ _... i';C4 - SHELF , Historyof Western Oil Shale Paul L. Russell . " The Center for Professional Advancement Paul Russell received his degree from the University of Arizona. After working for Industry for five years, he began his involvement with oil shale in 1948 when he joined the U.S. Bureau of Mines and was assigned to Rifle, Colorado, to work at Anvil Points. During the middle fifties, he was assigned to the Atomic Energy Com mission to study the extraction of ura nium from the Chattanooga Shales in Tennessee. He became Research Director of the U.S. Bureau ofMines in 1967 and served in this capacity until he retired in 1979. During these years his involvement with oil shale intensified. Currently, he is an engineering consultant. ISBN: 0-86563-000-3 ,._-------_._.. V.D.ALLRED 6016 SOUTH BANNOCK LI7TLETON. COLO. 80120 ....~ ...........~..... This compelling history spans 65 years of western oil shale development from its begin ning to the present day. These were the years in which most of the present-day retorting pro cesses were invented and devel oped,leading to present studies of in-situ retorting, and to the resumption of leasing of fed eral oil shale lands. The many excellent illustra tions and contemporary photo graphs in themselves provide a pictorial record of an era when the United States was "wild over oil"-an era when Gov ernment estimates of billions of barrels of oil in western oil shales were used to advan tage for questionable-if not fraudulent-stock promotions designed to raise capital for development, or to fatten the promoters' pockets. -
Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report. -
Overview of Baltic Forest and Wood Industry | I
23. Internationales Holzbau-Forum IHF 2017 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 1 Overview of Baltic Forest and Wood Industry Ieva Erele Latvian Forest Industry Federation Riga, Latvia Henrik Välja Estonian Forest and Wood Industries Association Kristaps Klauss Latvian Forest Industry Federation Riga, Latvia 23. Internationales Holzbau-Forum IHF 2017 2 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 23. Internationales Holzbau-Forum IHF 2017 Overview of Baltic Forest and Wood Industry | I. Erele, H. Välja, K. Klauss 3 Overview of Baltic Forest and Wood Industry We can certainly call Baltic states the land of forests. Almost every inhabitant is related to forest, forestry and forest products in one or another way. Since long ago wood has been used in heating, construction, production of furniture and other household items. Today forest sector and its wood processing industry have developed into one of the most important sectors of the regional economy. And despite the fact that it occupies only 4,1% of the EU's territory, the commercial forest stock accounts for 6,3% of the EU. Forest has deep roots into Baltic States culture traditions, as well as provides opportunities for spending free time in forest hunting, in sports activities or picking berries and mush- rooms. And furthermore, there are large nature values in our forests that in some cases are unique not only on European, but also global level. However, it’s not an opportunity because it’s simply here. The forest that grows by itself represents beautiful nature values, but it becomes „the green gold” because we have learned to use and manage it wisely – by protecting nature values, by securing resources for national growth and contributing to the wellbeing of our society. -
Wood Industry Report
Wood Industry Report Submitted by Tim Jenks Prosperity Region 3 Wood Industry Proposed Five Year Action Plan Introduction The Wood Products Industries form a broad sector of business activity in Northern Michigan, and particularly in the eleven counties of Region 3. An MSU Extension study in 2012 described the forest industry as “Michigan’s third largest manufacturing sector,” supporting “about 136,000 jobs and adding $17 billion to Michigan’s economy.” (MSUE, 2012) While timber harvests could increase somewhat above their current levels, the greatest opportunity for economic growth lies in the added value provided by manufacturing wood products. Timber harvest, sawmill operations, and wood products manufacturing represent traditional industries for the people of this area of Michigan. The sector offers long- term sustainability, opportunities for positive environmental impact, and lifestyle compatibility. The actions proposed in this section will work to stabilize and maintain the existing industry, as well as to promote the establishment and growth of new entrepreneurial businesses. Overview of the Wood Products Industry Sector The “Wood Industry” sector includes a supply chain of related goods and services, ranging from harvesters to cut the trees to skilled crafts who create finished products. In addition, the sector supports large trucking operations, heavy equipment for harvesting and loading, maintenance services, and other support businesses. Harvesters Harvesters comprise a number of small businesses with a large investment in capital equipment. They sometimes own “tree farm” land, but more often bid on contracts to cut timber, either in behalf of a sawmill, or to sell independently to a sawmill. Northern Michigan’s forest lands – including extensive Federal and State holdings – continue to experience net growth every year. -
Innovation Insights Brief | 2020
FIVE STEPS TO ENERGY STORAGE Innovation Insights Brief | 2020 In collaboration with the California Independent System Operator (CAISO) ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on energy storage is part network of energy leaders and practitioners promoting of a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the premiere global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2020 Copyright © 2020 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World