HISTORY of WESTERN OIL SHALE HISTORY of WESTERN OIL SHALE

Total Page:16

File Type:pdf, Size:1020Kb

HISTORY of WESTERN OIL SHALE HISTORY of WESTERN OIL SHALE / _... i';C4 - SHELF , Historyof Western Oil Shale Paul L. Russell . " The Center for Professional Advancement Paul Russell received his degree from the University of Arizona. After working for Industry for five years, he began his involvement with oil shale in 1948 when he joined the U.S. Bureau of Mines and was assigned to Rifle, Colorado, to work at Anvil Points. During the middle fifties, he was assigned to the Atomic Energy Com­ mission to study the extraction of ura­ nium from the Chattanooga Shales in Tennessee. He became Research Director of the U.S. Bureau ofMines in 1967 and served in this capacity until he retired in 1979. During these years his involvement with oil shale intensified. Currently, he is an engineering consultant. ISBN: 0-86563-000-3 ,._-------_._.. V.D.ALLRED 6016 SOUTH BANNOCK LI7TLETON. COLO. 80120 ....~ ...........~..... This compelling history spans 65 years of western oil shale development from its begin­ ning to the present day. These were the years in which most of the present-day retorting pro­ cesses were invented and devel­ oped,leading to present studies of in-situ retorting, and to the resumption of leasing of fed­ eral oil shale lands. The many excellent illustra­ tions and contemporary photo­ graphs in themselves provide a pictorial record of an era when the United States was "wild over oil"-an era when Gov­ ernment estimates of billions of barrels of oil in western oil shales were used to advan­ tage for questionable-if not fraudulent-stock promotions designed to raise capital for development, or to fatten the promoters' pockets. History oj Western Oil Shale recaptures the mood of the times. Paul Russell compre­ hensively reviews with accu­ racy and detail the technical and financial problems of the early days and relates them to current oil shale developments. This History oj Western Oil Shale will hold the interest of those from diversified fields. It is the story 0 f man's continuing attempt to extract oil from rock, a timeless story. Paul Russell's book is more than a history of oil shale, it is part of the history of this country. Edited by Arnold H. Peio/sky Arnold H. Pelofsky is President of AER Enterprises. He has been directly involved with oil shale since 1965. His involvement has ranged from con­ ducting basic research to commer­ cialization activities. HISTORY of WESTERN OIL SHALE HISTORY of WESTERN OIL SHALE Paul L. Russell Research Director, U.S. Bureau ofMines, 1967-1979 Edited by Arnold H. Pelofsky 1980 THE CENTER FOR PROFESSIONAL ADVANCEMENT EASTBRUNSWICK' NEW JERSEY THE CENTER FOR PROFESSIONAL ADVANCEMENT BOX H, EAST BRUNSWICK, NEW JERSEY 08816, USA © 1980 The Center for Professional Advancement. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any information retrieval system, without the prior written permission ofthe publishers, The Center for Professional Advancement, Box H, East Brunswick, New Jersey 08816, U.S.A. Publishing Consultant: Jack K. Burgess, Inc. Library of Congress Cataloging in Publication Data Russell, Paul L. History of Western Oil Shale Bibliography; p. Includes Index. 1. Oil-shales-The West-History. I. Peiofsky, Arnold H. II. Title. TN859. U52W477 553.2'82 80-66410 ISBN 0-86563-000-3 Library oJCongress Catalog Card Number 80-66410 International Standard Book Number 0-86563-000-3 Printed in the United States oJAmerica To the memory ofDr. Charles H. Prien, who spent the last 35 years of his life on the problems of oil shale. He is one of the Fathers ofshale oil. v Table of Contents Dedication . .. ........................................ v Table ofContents ............................................................... vii List ofIllustrations . ..............................................................xi Foreword. .. ....xv Preface . ......................................................................xvii Acknowledgments . .............................................................xix Introduction . ..................................................................xxi PART I: EARLY HISTORY Historical Notes. .. 3 GreenRiverandNevadaOilShales ....................................... 3 Early Activity in Western Shales. .. 5 The Great Land Rush .............................................. 5 Assessment Work ................................................. 6 Financing and Stock Promotions. .. 10 Gold, Silver and Other Metals ....................................... 13 Retorts and Retorting . .. 14 PART II: 1915-1930 TheBoomEra ........................................................ 21 Shale Oil Production 1915-1930...................................... 21 Colorado Activities ................................................ 21 American Continuous Retort Co. ................................ 21 American Shale Refining Company. .. 24 The Belvedere Oil Shale and Refining Company. .. 26 Bureau ofMines-RulisonProject ............................... 26 Campbell Refining Corp. ... .. 30 Colorado School ofMines ...................................... 35 Champion Oil Shale& Refining Company ......................... 36 ColoradoCarbonCompany. .. 37 Columbia Oil Shale and Refining Company . .. 39 Continental Oil Shale Mining and Refining Company. .. 40 TheGrand Valley Oil & Shale Co................................. 43 Index Oil Shale Company. .. 45 vii Table ofContents The LackawannaOil Shale ProductsCompany . .. 51 The March Oil Shale Company. .. 52 TheMonarch Oil Shale Company ................................ 55 TheMount LoganOil Shale and Refining Company ................. 58 TheOil Shale Mining Company. .. 61 The Searchlight Oil Shale & Refining Company . .. 68 Union Oil Co. ofCalifornia, Inc .................................. 70 Ventura-Colorado Oil Company. .. 70 Washington Shale Oil & ProductsCompany. .. 71 Montana Activities ... .. 73 Dillon Oil Company ........................................... 73 NevadaActivities . .. 75 Catlin Shale ProductsCompany ................................. 75 Southern Pacific Railroad Co., Inc................................ 80 UtahActivities .................................................... 82 RockyMountain Refining Company. .. 83 The "Mormon" Retort, Juab County, Utah. .. 85 TheUteOilCompany .......................................... 87 TheWestern Shale on Company . .. 90 Willow CreekRetort . .. 93 Wyoming Activities. .. 95 The Wyoming Oil ProductsCompany. .. 95 TheAmericanShaleandPetroleumCompany ...................... 96 New Brunswick, Canada, Activities. .. 96 D'Arcy ExplorationCompany. .. 96 PART III: 1940-1969 Retorting Methods .................................................... 101 World WarIIand Post-WarYears ........................................ 103 Bureau ofMines, Rifle, Colorado, Project ............................. 103 Sinclair Research Incorporated ...................................... 107 Union Oil CompanyofCalifornia, Inc ................................. 107 TheOil Shale Corporation(TOSCO) .................................. III Colorado School ofMines Research Foundation, Inc..................... III Project Bronco.................................................... 113 Shell Oil Co., Inc. ................................................ 114 P ART IV: 1970-1979 CurrentActivities ..................................................... 117 Government Leasing ............................................... 117 Colorado Lease Tract, C-a ...................................... 119 Colorado LeaseTract, Cob ...................................... 120 Utah LeaseTract, U-aand U-b ................................... 121 Development ..................................................... 122 Paraho Corporation ........................................... 122 SuperiorOil Shale Project. ...................................... 123 viii I Table ofContents 1 Occidental Petroleum Corporation ............................... 124 The Oil Shale Corporation (TOSCO) and Colony Development Operations ............................................... 124 Talley Energy Systems, Incorporated ............................. 126 Geokinetics, Inc ............................................... 127 Equity Oil Co., Inc............................................. 129 Laramie Energy Research Center ................................. 129 TOSCOCorporation-Sand Wash Project ........................129 UnionOHCo., Inc............................................. 130 U.S. Bureau ofMines .......................................... 131 PART V: SUMMARY AND EPILOGUE Summary . ...........................................................135 Epilogue . ............................................................ 137 References Index ix rI I List of Illustrations Figure No. Page 1. Principal oil shale deposits in the United States ..........................xxii 2. Oil shale deposits of Colorado, Utah and Wyoming showing Federal lease tracts . 4 3. Oil shale land ownership map, Utah and Colorado ....................... 8 4. Announcement of oil shale demonstrations near De Beque, Colorado, 1920 . .. II 5. The first Colorado oil shale retort ..................................... 15 6. Oil shale terrain, Colorado. .. 17 7. Location ofColorado oil shale with respectto Denver, Colorado ........... 22 8. Location ofColorado oil shales activities 1915-1930 . .. 23 9. Rod Mill, American Continuous Retort Co.. .. 24 10. Tramway tower, American Shale Refining Company, 1978 . .. 25 II. Rulison oil shale mine, 1976 .........................................
Recommended publications
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • Oil Shale in Jordan 1 2.1
    MINISTRY OF ENERGY AND MINERAL RESOURCES Mineral Status and Future Opportunity OIL SHALE Prepared By Dr Jamal Alali Geo. Abdelfattah Abu Salah Dr. Suha M. Yasin Geo. Wasfi Al Omari Edited By Geo. Julia Sahawneh Geo. Marwan Madanat 2014 Oil Shale Ministry of Energy and Mineral Resources, 2014 CONTENTS List of Contents I List of Figures II List of Tables II 1. Introduction 1 2. Geology of Oil Shale in Jordan 1 2.1. Origin and Definition 1 2.2. Mineralogy and Chemistry of Oil Shale 2 2.3. Uses and Industrial Applications of Oil Shale 3 3. Oil Shale Deposits 3 3.1. El-Lajjun Deposit 4 3.2. Sultani Oil Shale Deposit 6 3.3. Attarat Umm Ghudran Oil Shale Deposit 8 3.4. Wadi Maghar Oil Shale Deposit 9 3.5. Khan Az Zabib Deposit 10 3.6. Jurf Ed Darawish Deposit 11 3.7. Siwaqa Deposit 11 3.8. El Hasa Deposit 12 3.9. Eth Thamad/ Madaba Area 4. Summary of Previous Technical Activities 12 5. Mining Aspects 14 5.1. Overburden 14 5.2. Ore Body of the Oil Shale 14 5.3. Reserves 14 5.4. Mining Method 15 6. Oil shale Technologies and Exploitation Worldwide 17 6.1. Crude Oil Production 17 6.2. Power Generation 18 7. Investment Opportunities and Outlook 19 7.1. Crude Oil Production 20 7.2. Direct Combustion 20 8. References 23 I Oil Shale Ministry of Energy and Mineral Resources, 2014 List of Figures Figure (1): Location map of the major oil shale deposits. 5 Figure (2): Oil Shale outcrop in El-Lajjun deposit.
    [Show full text]
  • Oil Shale and Tar Sands
    Fundamentals of Materials for Energy and Environmental Sustainability Editors David S. Ginley and David Cahen Oil shale and tar sands James W. Bunger 11 JWBA, Inc., Energy Technology and Engineering, Salt Lake City, UT, USA 11.1 Focus 11.2 Synopsis Tar sands and oil shale are “uncon- Oil shale and tar sands occur in dozens of countries around the world. With in-place ventional” oil resources. Unconven- resources totaling at least 4 trillion barrels (bbl), they exceed the world's remaining tional oil resources are characterized petroleum reserves, which are probably less than 2 trillion bbl. As petroleum becomes by their solid, or near-solid, state harder to produce, oil shale and tar sands are finding economic and thermodynamic under reservoir conditions, which parity with petroleum. Thermodynamic parity, e.g., similarity in the energy cost requires new, and sometimes of producing energy, is a key indicator of economic competitiveness. unproven, technology for their Oil is being produced on a large commercial scale by Canada from tar sands, recovery. For tar sands the hydrocar- and to a lesser extent by Venezuela. The USA now imports well over 2 million barrels bon is a highly viscous bitumen; for of oil per day from Canada, the majority of which is produced from tar sands. oil shale, it is a solid hydrocarbon Production of oil from oil shale is occurring in Estonia, China, and Brazil albeit on called “kerogen.” Unconventional smaller scales. Importantly, the USA is the largest holder of oil-shale resources. oil resources are found in greater For that reason alone, and because of the growing need for imports in the USA, quantities than conventional petrol- oil shale will receive greater development attention as petroleum supplies dwindle.
    [Show full text]
  • Runway Shows and Fashion Films As a Means of Communicating the Design Concept
    RUNWAY SHOWS AND FASHION FILMS AS A MEANS OF COMMUNICATING THE DESIGN CONCEPT A thesis submitted to the College of the Arts of Kent State University in partial fulfillment of the requirements for the degree of Master of Arts By Xiaohan Lin July 2016 2 Thesis written by Xiaohan Lin B.S, Kent State University, 2014 M.A., Kent State University, 2016 Approved by ______________________________________________ Name, Thesis Supervisor ______________________________________________ Name, Thesis Supervisor or Committee Member ______________________________________________ Name, Committee Member ______________________________________________ Dr. Catherine Amoroso Leslie, Graduate Studies Coordinator, The Fashion School ______________________________________________ Dr. Linda Hoeptner Poling, Graduate Studies Coordinator, The School of Art ______________________________________________ Mr. J.R. Campbell, Director, The Fashion School ______________________________________________ Dr. Christine Havice, Director, The School of Art ______________________________________________ Dr. John Crawford-Spinelli, Dean, College of the Arts 3 REPORT OF THESIS FINAL EXAMINATION DATE OF EXAM________________________ Student Number_________________________________ Name of Candidate_______________________________________ Local Address_______________________________________ Degree for which examination is given_______________________________________ Department or School (and area of concentration, if any)_________________________ Exact title of Thesis_______________________________________
    [Show full text]
  • EMD Oil Shale Committee
    EMD Oil Shale Committee 2017 EMD Oil Shale Committee Report Justin E. Birdwell (Chair), U.S. Geological Survey November 29, 2017 Vice-Chairs: • Gerald Daub (Vice-Chair: Industry), Daub & Associates, Inc. • Dr. Lauren Birgenheier (Vice-Chair: University), University of Utah • Michael D. Vanden Berg (Vice-Chair: Government), Utah Geological Survey Advisory Group: • Dr. Alan K. Burnham, Stanford University • Dr. Jeremy Boak, Oklahoma Geological Survey, University of Oklahoma • Mr. Ronald C. Johnson, U.S. Geological Survey Special Consultants to the Committee: • John Parsons, QER Pty Ltd • Gary Aho, Sage Geotech • Indrek Aarna, Eesti Energia • Rikki Hrenko-Browning, Enefit American Oil • Ryan Clerico, Enefit American Oil • Alex Bocock, Red Leaf Resources • Christopher Hopkins, Canshale Corp. • Steven Kerr, Millcreek Mining Group • Steven Odut, Thyssenkrupp • Pierre Allix, Total S.A. EXECUTIVE SUMMARY Low oil prices continue to hamper oil shale development around the world. Although new production capacity in Estonia and China has come online recently, efforts in other places are on indefinite hiatus or are well behind schedule relative to what was anticipated just a few years ago. The current status remains in flux, and recent developments in conventional and unconventional crude oil plays in the United States and elsewhere indicate this will not change anytime soon. Oil shale continues to be mined processed in China and Brazil, but production updates for 2016 were not available as of the preparation of this report. In Estonia, Eesti Energia (Enefit) continued development of their co-generation Auvere power plant that is designed to utilize both oil shale and other fuel sources (wood chips, peat, gas).
    [Show full text]
  • Organic-Rich Shale of the United States and World Land Areas Organic-Rich Shale of the United States and World Land Areas
    GEOLOGICAL SURVEY CIRCULAR 523 Organic-Rich Shale of the United States and World Land Areas Organic-Rich Shale of the United States and World Land Areas By Donald C. Duncan and Vernon E. Swanson Geological Survey Circular 523 Washington 7965 United States Department of the Interior STEWART L. UDALL, Secretary Geological Survey William T. Pecora, Director REPRINTED 1966 Free on application to the U.S. Geological Survey, Washington, D.C. 20242 CONTENTS Page Page Abstract----- _ ____________ _ ____ 1 Shale oil resources Continued Introduction- ______________ _ _____ 1 North America Continued Acknowledgments __ ____________ _ 2 United States Continued Previous summaries______________ 2 Shale associated with coal ______ 14 Definitions _______________________ 2 Other shale deposits _ ______ 15 Organic -rich shale _____________ 2 Total shale oil resources.---- 16 Oil shale __ ____ __ ___ __ 3 Other areas in North America ____ 16 Other terms ___________________ 3 Africa-___--__-_-_----_--_----_--- 17 Types of deposits_________________ 4 Total shale oil resources of Potential energy, oil, or gas yield of Africa _______________________ 17 the organic matter in shale ______ 4 Asia _________ _ _____ ___ 19 Status of the shale industry ________ 5 China __________________ _ 19 World production _______________ 5 Israel, Jordan, and Syria _________ 19 Byproducts ____________________ 5 Siberia _________________________ 20 Activities in the United States ____ 5 Thailand and Burma-_____________ 20 Classification of resources ________ 5 Turkey ________ _____
    [Show full text]
  • Agriculture, Forestry, and Other Human Activities
    4 Agriculture, Forestry, and Other Human Activities CO-CHAIRS D. Kupfer (Germany, Fed. Rep.) R. Karimanzira (Zimbabwe) CONTENTS AGRICULTURE, FORESTRY, AND OTHER HUMAN ACTIVITIES EXECUTIVE SUMMARY 77 4.1 INTRODUCTION 85 4.2 FOREST RESPONSE STRATEGIES 87 4.2.1 Special Issues on Boreal Forests 90 4.2.1.1 Introduction 90 4.2.1.2 Carbon Sinks of the Boreal Region 90 4.2.1.3 Consequences of Climate Change on Emissions 90 4.2.1.4 Possibilities to Refix Carbon Dioxide: A Case Study 91 4.2.1.5 Measures and Policy Options 91 4.2.1.5.1 Forest Protection 92 4.2.1.5.2 Forest Management 92 4.2.1.5.3 End Uses and Biomass Conversion 92 4.2.2 Special Issues on Temperate Forests 92 4.2.2.1 Greenhouse Gas Emissions from Temperate Forests 92 4.2.2.2 Global Warming: Impacts and Effects on Temperate Forests 93 4.2.2.3 Costs of Forestry Countermeasures 93 4.2.2.4 Constraints on Forestry Measures 94 4.2.3 Special Issues on Tropical Forests 94 4.2.3.1 Introduction to Tropical Deforestation and Climatic Concerns 94 4.2.3.2 Forest Carbon Pools and Forest Cover Statistics 94 4.2.3.3 Estimates of Current Rates of Forest Loss 94 4.2.3.4 Patterns and Causes of Deforestation 95 4.2.3.5 Estimates of Current Emissions from Forest Land Clearing 97 4.2.3.6 Estimates of Future Forest Loss and Emissions 98 4.2.3.7 Strategies to Reduce Emissions: Types of Response Options 99 4.2.3.8 Policy Options 103 75 76 IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 4.3 AGRICULTURE RESPONSE STRATEGIES 105 4.3.1 Summary of Agricultural Emissions of Greenhouse Gases 105 4.3.2 Measures and
    [Show full text]
  • Secure Fuels from Domestic Resources ______Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development
    5th Edition Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy • Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents have since been revised and updated to reflect changes and progress that have occurred in the domestic oil shale and tar sands industries since the first release and to include profiles of additional companies engaged in oil shale and tar sands resource and technology development. Each of the companies profiled in the original report has been extended the opportunity to update its profile to reflect progress, current activities and future plans. Acknowledgements This report was prepared by INTEK, Inc. for the U.S. Department of Energy, Office of Petroleum Reserves, Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC- PSS) Contract Number DE-FE0000175 (Task 30). Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager. AOC-PSS and INTEK, Inc. wish to acknowledge the efforts of representatives of the companies that provided information, drafted revised or reviewed company profiles, or addressed technical issues associated with their companies, technologies, and project efforts. Special recognition is also due to those who directly performed the work on this report. Mr. Peter M. Crawford, Director at INTEK, Inc., served as the principal author of the report.
    [Show full text]
  • Mineral Oil (Medium Viscosity)
    MINERAL OIL (MEDIUM VISCOSITY) Prepared at the 76th JECFA, published in FAO JECFA Monographs 13 (2012), superseding specifications for Mineral oil (Medium and low viscosity), class I prepared at the 59th JECFA (2002), published in FNP 52 Add 10 (2002) and republished in FAO JECFA Monographs 1 (2005). An ADI of 0-10 mg/kg bw was established at the 59th JECFA for mineral oil (medium and low), class I. At the 76th JECFA the temporary ADI and the specifications for mineral oils (Medium and low viscosity), class II and class III were withdrawn. SYNONYMS Liquid paraffin, liquid petrolatum, food grade mineral oil, white mineral oil, INS No. 905e DEFINITION A mixture of highly refined paraffinic and naphthenic liquid hydrocarbons with boiling point above 200°; obtained from mineral crude oils through various refining steps (eg. distillation, extraction and crystallisation) and subsequent purification by acid and/or catalytic hydrotreatment; may contain antioxidants approved for food use. C.A.S. number 8012-95-1 DESCRIPTION Colourless, transparent, oily liquid, free from fluorescence in daylight; odourless FUNCTIONAL USES Release agent, glazing agent CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water, sparingly soluble in ethanol, soluble in ether Burning Burns with bright flame and with paraffin-like characteristic smell PURITY Viscosity, 100° 8.5-11 mm2/s See description under TESTS Carbon number at 5% Not less than 25 distillation point The boiling point at the 5% distillation point is higher than: 391°. See description under TESTS Average molecular 480-500 weight See description under TESTS Acidity or alkalinity To 10 ml of the sample add 20 ml of boiling water and shake vigorously for 1 min.
    [Show full text]
  • Forest Engineering Syllabus - 2004
    Forest Engineering Syllabus - 2004 INTRODUCTION Nineteen engineering disciplines are included in the Examination Syllabus issued by the Canadian Engineering Qualifications Board of Engineers Canada. Each discipline examination syllabus is divided into two examination categories: compulsory and elective. A full set of Forest Engineering examinations consists of nine, three-hour examination papers. Candidates will be assigned examinations based on an assessment of their academic background. Examinations from discipline syllabi other than those specific to the candidates’ discipline may be assigned at the discretion of the constituent Association/Ordre. Before writing the discipline examinations, candidates must have passed, or have been exempted from, the Basic Studies Examinations. Information on examination scheduling, textbooks, materials provided or required, and whether the examinations are open or closed book, will be supplied by the constituent Association/Ordre. FOREST ENGINEERING EXAMINATIONS GROUP A COMPULSORY EXAMINATIONS (SIX REQUIRED) 04-For-A1 Forest Engineering Operations The identification and characteristics of forest operations functions, systems and machinery and the key environmental, economic and social parameters associated with their use. Design of forest operations at the forest stand, small district, and single contractor level. The analysis, planning and managing of forest operation administrative issues including wages and benefits, occupational health and safety regulations, business organization, contracts and contracting. 04-For-A2 Wood Technology Wood anatomy at the molecular and cell level, and the anatomical structure of wood. Identification of common Canadian species based on both gross and minute features. Physical properties of wood – relative density, shrinkage, swelling, and dimensional changes. Mechanical properties of wood – stress-strain response of wood, its orthotropic properties, and the influence of moisture, temperature, cellular structure and growth features on its strength.
    [Show full text]
  • Salicylic Acid
    Treatment Guide to Common Skin Conditions Prepared by Loren Regier, BSP, BA, Sharon Downey -www.RxFiles.ca Revised: Jan 2004 Dermatitis, Atopic Dry Skin Psoriasis Step 1 - General Treatment Measures Step 1 - General Treatment Measures Step 1 • Avoid contact with irritants or trigger factors • Use cool air humidifiers • Non-pharmacologic measures (general health issues) • Avoid wool or nylon clothing. • Lower house temperature (minimize perspiration) • Moisturizers (will not clear skin, but will ↓ itching) • Wash clothing in soap vs detergent; double rinse/vinegar • Limit use of soap to axillae, feet, and groin • Avoid frequent or prolonged bathing; twice weekly • Topical Steroids Step 2 recommended but daily bathing permitted with • Coal Tar • Colloidal oatmeal bath products adequate skin hydration therapy (apply moisturizer • Anthralin • Lanolin-free water miscible bath oil immediately afterwards) • Vitamin D3 • Intensive skin hydration therapy • Limit use of soap to axillae, feet, and groin • Topical Retinoid Therapy • “Soapless” cleansers for sensitive skin • Apply lubricating emollients such as petrolatum to • Sunshine Step 3 damp skin (e.g. after bathing) • Oral antihistamines (1st generation)for sedation & relief of • Salicylic acid itching give at bedtime +/- a daytime regimen as required Step 2 • Bath additives (tar solns, oils, oatmeal, Epsom salts) • Topical hydrocortisone (0.5%) for inflammation • Colloidal oatmeal bath products Step 2 apply od-tid; ointments more effective than creams • Water miscible bath oil • Phototherapy (UVB) may use cream during day & ointment at night • Humectants: urea, lactic acid, phospholipid • Photochemotherapy (Psoralen + UVA) Step 4 Step 3 • Combination Therapies (from Step 1 & 2 treatments) • Prescription topical corticosteroids: use lowest potency • Oral antihistamines for sedation & relief of itching steroid that is effective and wean to twice weekly.
    [Show full text]
  • Is Apparel Manufacturing Coming Home? Nearshoring, Automation, and Sustainability – Establishing a Demand-Focused Apparel Value Chain
    Is apparel manufacturing coming home? Nearshoring, automation, and sustainability – establishing a demand-focused apparel value chain McKinsey Apparel, Fashion & Luxury Group October 2018 Authored by: Johanna Andersson Achim Berg Saskia Hedrich Patricio Ibanez Jonatan Janmark Karl-Hendrik Magnus 2 Is apparel manufacturing coming home? Table of Contents Introduction 4 Is apparel manufacturing coming home? 6 Era of change 6 Nearshoring breakeven 10 Overcoming challenges in nearshoring 12 The prospect of automation 15 Promising automation technologies 15 Economic viability of automation 18 How quickly can the prospect become reality? 21 The automation journey 23 Embarking on the journey 24 Defining the future sourcing and production strategy 24 Developing new skills and changing mindsets 26 Building a new ecosystem of partnerships 27 Taking the first step 28 Table of Contents 3 Introduction Tomorrow’s successful apparel companies will be those that take the lead to enhance the apparel value chain on two fronts: nearshoring and automation. It cannot be just one of them and it must be done sustainably. Apparel companies can no longer conduct business as usual and expect to thrive. Due to the Internet and stagnation in key markets, competition is fiercer than ever and consumer demand is more difficult to predict. Mass-market apparel brands and retailers are competing with pure-play online start-ups, the most successful of which can replicate trendy styles and get them to customers within weeks. Furthermore, apparel companies have lost much of their clout in trendsetting. In most mass-market categories, today’s hottest trends are determined by individual influencers and consumers rather than by the marketing departments of fashion companies.
    [Show full text]