Butternut: the Most Famous Tree No One’S Heard Of

Total Page:16

File Type:pdf, Size:1020Kb

Butternut: the Most Famous Tree No One’S Heard Of Melanie Moore and Mike Ostry, USDA Forest Service, Northern Research Station, St. Paul, MN Paul Berrang, USDA Forest Service Region 9, Milwaukee, WI Butternut: The most famous tree no one’s heard of Juglans cinerea Butternut Oil nut White walnut Lemon nut Paul Berrang The Butternut treetopics.com Ecological importance • Riparian species • Soil stabilization • Mast (wildlife food) • Northernmost large mast • Biodiversity na.fs.fed.us nativeplantwildlifegarden.com The Butternut Human Uses: Hawkridge Furniture • Furniture • Paneling • Carving James F. Frechette • Nuts • Syrup epitkezes-kert.vatera.hu • Dye • Medicine • Fish toxin • Historical significance springvalleyherbs.com The Butternut L’ans aux Meadows: Viking settlement site Faculty.cua.edu D. Gordon E. Robertson JonnyU Wikipedia.org Cultural History George Bush: First American settlers of the Olympic Peninsula Henderson House Museum Henderson House Museum bushprairiefarm.com Olympia Historical Society Cultural History Butternut Soldiers: Confederates in homespun uniforms Jessica Hack garyhendershott.net fiveprime.org Cultural History Problems • Short-lived • Regeneration poor • Needs full sunlight and disturbed soil • Several pests and diseases • Butternut canker Butternut Canker Butternut Canker The Fungus: Ophiognomonia clavigignenti-juglandacearum “OCJ” Formerly Sirococcus clavigignenti-juglandacearum uvm.edu uvm.edu Mike Ostry Closely related to Walnut Anthracnose Ophiognomonia (Gnomonia) leptostyla, Marssonina juglandis Butternut Canker Probably an introduced pathogen from Asia • Recent appearance (since 1960’s) • Rapid spread • Only asexual spores found, no sexual stage • Resistant Japanese “heartnuts” planted widely 100 yrs ago • DNA studies show 3 genetic clusters, several introductions • DNA a close match to an endophyte on Chinese maples Base map by Andrew Clarke Butternut Canker The Threatened/Endangered Butternut • Listed endangered in Canada • US Forest Service “Regional Forester sensitive plant” • Listed endangered in Minnesota US Forest Service FIA Surveys • Decline in butternut numbers in nearly every size class and every recent state surveyed (5 years, 2007-2012) • Top losses • Iowa 92% • Michigan 73% • Missouri 52% Butternut Canker Current Research Findings • Conidia can survive 2 weeks or more on a surface over a range of temperatures and humidities (vector, seed, scion, etc.) • Host range studies- Artificial inoculations Fungus Recovered Fungus Recovered Canker Stem Wounded Leaf Butternut Red Oak Butternut Bur Oak Black Walnut White Oak Black Walnut Red Oak Heartnut Black Oak Heartnut White Oak Persian Walnut Black Cherry Manchurian Walnut Sugar Maple Shagbark Hickory Hazel Chinese Walnut Yellow Birch Bitternut Hickory Chestnut Shagbark Hickory Sweet Birch Pecan Bitternut Hickory American Beech Pecan = Natural infection documented Current Research Is There Hope? Healthy Cankered • Bark phenotype: Dark/deep versus light/shallow • Structural differences: Thickness of periderm • Chemical differences: Natural defenses such as juglone Current Research: Resistance Testing for Resistance: Inoculations Drawbacks • Time consuming • Inconsistent results • Bypass bark defenses Goal: Develop a rapid screening technique… Current Research: Resistance Juglans species and Juglone: a possible resistance mechanism • Allelopathy • Antibiotic properties • Traditional and herbal medicines Rosemount (UMore Park): • Selected grafted butternuts, non- selected butternuts, black walnut, heartnut, and hybrids • Bark sampled monthly, three years Current Research: Bark Extracts Butternut Bark Bioassay • Collect branch samples and peel inner bark • Dry and grind • Extract in 95% ethanol • Evaporate ethanol • Apply to filter discs • Place on Petri dish seeded with OCJ spores • Measure inhibition zone in 3 days Current Research: Bark Extracts Bioassay Results 2010 Inhibition Zone by Month 22 20 Selected Butternut 18 B S 16 H W Unselected Butternut Y Meaninhibition zone,mm 14 12 Apr May Jun Jul Aug Sep Oct Month 2010 Inhibition Zone by Accession 20 19 18 17 16 15 14 13 12 Mean inhibition zone, mm zone, inhibitionMean 11 10 B16 B03 S01 H133 B10 W01 B11 S54 B04 Y128 S67 S60 S22 S148 S20 Accession Current Research: Bark Extracts Chemical Characterization • Same crude extracts as those used in bioassay • Ultra high performance liquid chromatography • Juglone and plumbagin (both naphthoquinones) • Quantity varied by accession and month • Juglone data correlates with bioassay data for butternuts (r2 > 0.53) for 5 of 9 months • Juglone and probable other chemical substances may have a role in resistance Current Research: Bark Extracts The Hybrid Dilemma Butternut “Buart” Juglans cinerea J. x bixbyi • Vigorous and faster growing • More resistant to butternut canker • Difficult to distinguish from pure butternut • Areas of high hybrid incidence— urban, farms, etc. • Unknown ecological consequences X Japanese walnut (Heartnut) Juglans ailantifolia var. cordiformis Often “resistant” butternuts turn out to be hybrids! Current Research: Hybrids Hybrid Resistance Studies Forest Service unit at Purdue Canker incidence in half-sib families of seed from selected parents Preliminary Results of long-term study: Butternuts Hybrids • Very few in resistant categories • Resistant to susceptible • Resistance heritability low • Resistance heritability higher Hybrids may have usefulness in breeding if pure species selections fail Current Research: Hybrids Identify healthy trees in forests; Collect scion Graft to Manage remaining (twigs) rootstock stands Overview of Forest Establish clone Service (Region 9) banks Butternut Conservation Preserve copies of Restore butternut Produce seed; original trees; to forests Test for resistance Test for resistance Conservation Program Clone Banks being established: Key locations • UMore Park, Rosemount, MN • Oconto River Seed Orchard, Nicolet NF, WI • Hardwood Tree Improvement and Regeneration Center, Purdue University, IN • Ontario Ministry of Natural Resources (several locations) Recent federal and state locations • Green Mountain NF, VT • Mark Twain NF, MO • Wayne NF, OH • Allegheny NF, PA • PA Bureau of Forestry • VT Dept. of Forests and Middlebury College Some locations are also starting seed banks Conservation Program Additional Disease Research Questions • Site influence • Stress vs. canker severity • Tree age Restoration Research Questions • Seed regeneration “how-to’s” • Planting “how to’s” • Reducing competition • Reducing damage from deer Future study Summary • Clone and seed banks preserve potentially resistant material • Bark extract research could be useful in early screening • Hybrid testing encouraging • Host range studies, stem and leaf • Spore viability and movement • One of many North American trees being threatened by introduced diseases The Bush Butternut Tree bushprairiefarm.com Will future generations be able to connect with this tree? Summary Thanks to our cooperators: • Jim McKenna, FS • County, state and federal foresters • University of Minnesota • UMore Park Experiment Station • Dr. Adrian Hegeman, Dept. of Horticulture • A. Cece Martin, Dept. of Horticulture • Dr. Bob Blanchette.
Recommended publications
  • Identifying Species and Hybrids in the Genus Juglans by Biochemical Profiling of Bark
    ISSN 2226-3063 e-ISSN 2227-9555 Modern Phytomorphology 14: 27–34, 2020 https://doi.org/10.5281/zenodo.200108 RESEARCH ARTICLE Identifying species and hybrids in the genus juglans by biochemical profiling of bark А. F. Likhanov *, R. I. Burda, S. N. Koniakin, M. S. Kozyr Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, 37, Lebedeva Str., Kyiv 03143, Ukraine; * likhanov. [email protected] Received: 30. 11. 2019 | Accepted: 23. 12. 2019 | Published: 02. 01. 2020 Abstract The biochemical profiling of flavonoids in the bark of winter shoots was conducted with the purpose of ecological management of implicit environmental threats of invasions of the species of the genus Juglans and their hybrids under naturalization. Six species of Juglans, introduced into forests and parks of Kyiv, were studied, namely, J. ailantifolia Carrière, J. cinerea L., J. mandshurica Maxim., J. nigra L., J. regia L., and J. subcordiformis Dode, cultivar J. regia var. maxima DC. ′Dessert′ and four probable hybrids (♀J. subcordiformis × ♂J. ailantifolia; ♀J. nigra × ♂J. mandshurica; ♀J. cinerea × ♂J. regia and ♀J. regia × ♂J. mandshurica). Due to the targeted introduction of different duration, the invasive species are at the beginning stage of forming their populations, sometimes amounting to naturalization. The species-wise specificity of introduced representatives of different ages (from one-year-old seedlings to generative trees), belonging to the genus Juglans, was determined. J. regia and J. nigra are the richest in the content of secondary metabolites; J. cinerea and J. mandshurica have a medium level, and J. ailantifolia and J. subcordiformis-a low level. On the contrary, the representatives of J.
    [Show full text]
  • Conservation and Management of Butternut Trees
    Purdue University Purdue extension FNR-421-W & Natural Re ry sou Forestry and Natural Resources st rc re e o s F Conservation and Management of Butternut Trees Lenny Farlee1,3, Keith Woeste1, Michael Ostry2, James McKenna1 and Sally Weeks3 1 USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 PURDUE UNIVERSITY 2 USDA Forest Service Northern Research Station, 1561 Lindig Ave. St. Paul, MN 55108 3 Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 Introduction Butternut (Juglans cinerea), also known as white wal- nut, is a native hardwood related to black walnut (Juglans nigra) and other members of the walnut family. Butternut is a medium-sized tree with alternate, pinnately com- pound leaves, that bears large, sharply ridged, cylindrical nuts inside sticky green hulls that earned it the nickname lemon-nut (Rink, 1990). The nuts, a preferred food of squirrels and other wildlife, were collected and eaten by Native Americans (Waugh, 1916; Hamel and Chiltoskey, 1975) and early settlers, who also valued butternut for its workable, medium brown-colored heartwood (Kel- logg, 1919), and as a source of medicine (Johnson, 1884; Lawrence, 1998), dyes (Hamel and Chiltoskey, 1975), and sap sugar. Butternut’s native range extends over the entire north- eastern quarter of the United States, including many states immediately west of the Mississippi River. Butter- nut is more cold-tolerant than black walnut, and it grows as far north as the Upper Peninsula of Michigan, New Brunswick, southern Quebec, and Ontario (Fig.1).
    [Show full text]
  • Conservation Assessment for Butternut Or White Walnut (Juglans Cinerea) L. USDA Forest Service, Eastern Region
    Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. USDA Forest Service, Eastern Region 2003 Jan Schultz Hiawatha National Forest Forest Plant Ecologist (906) 228-8491 This Conservation Assessment was prepared to compile the published and unpublished information on Juglans cinerea L. (butternut). This is an administrative review of existing information only and does not represent a management decision or direction by the U. S. Forest Service. Though the best scientific information available was gathered and reported in preparation of this document, then subsequently reviewed by subject experts, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if the reader has information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Butternut or White walnut (Juglans cinerea) L. 2 Table Of Contents EXECUTIVE SUMMARY .....................................................................................5 INTRODUCTION / OBJECTIVES.......................................................................7 BIOLOGICAL AND GEOGRAPHICAL INFORMATION..............................8 Species Description and Life History..........................................................................................8 SPECIES CHARACTERISTICS...........................................................................9
    [Show full text]
  • Juglans Nigra Juglandaceae L
    Juglans nigra L. Juglandaceae LOCAL NAMES English (walnut,American walnut,eastern black walnut,black walnut); French (noyer noir); German (schwarze Walnuß); Portuguese (nogueira- preta); Spanish (nogal negro,nogal Americano) BOTANIC DESCRIPTION Black walnut is a deciduous tree that grows to a height of 46 m but ordinarily grows to around 25 m and up to 102 cm dbh. Black walnut develops a long, smooth trunk and a small rounded crown. In the open, the trunk forks low with a few ascending and spreading coarse branches. (Robert H. Mohlenbrock. USDA NRCS. The root system usually consists of a deep taproot and several wide- 1995. Northeast wetland flora: Field office spreading lateral roots. guide to plant species) Leaves alternate, pinnately compound, 30-70 cm long, up to 23 leaflets, leaflets are up to 13 cm long, serrated, dark green with a yellow fall colour in autumn and emits a pleasant sweet though resinous smell when crushed or bruised. Flowers monoecious, male flowers catkins, small scaley, cone-like buds; female flowers up to 8-flowered spikes. Fruit a drupe-like nut surrounded by a fleshy, indehiscent exocarp. The nut has a rough, furrowed, hard shell that protects the edible seed. Fruits Bark (Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office produced in clusters of 2-3 and borne on the terminals of the current guide to plant species) season's growth. The seed is sweet, oily and high in protein. The bitter tasting bark on young trees is dark and scaly becoming darker with rounded intersecting ridges on maturity. BIOLOGY Flowers begin to appear mid-April in the south and progressively later until early June in the northern part of the natural range.
    [Show full text]
  • Juglans Spp., Juglone and Allelopathy
    AllelopathyJournatT(l) l-55 (2000) O Inrernationa,^,,r,':'r::;:';::::,:rt;SS Juglansspp., juglone and allelopathy R.J.WILLIS Schoolof Botany.L.iniversity of Melbourre,Parkville, Victoria 3052, ALrstr.alia (Receivedin revisedform : February 26.1999) CONTENTS 1. Introduction 2. HistoricalBackground 3. The Effectsof walnutson otherplants 3.i. Juglansnigra 3.1.1.Effects on cropplants 3. I .2. Eft'ectson co-plantedtrees 3. 1 .3 . Effectson naturalvegetation 3.2. Juglansregia 3.2.1. Effectson otherplalrts 3.2.2.Effects on phytoplankton 1.3. Othel walnuts : Juglans'cinerea, J. ntttlor.J. mandshw-icu 4. Juglone 5. Variability in the effect of walnut 5.1. Intraspecificand Interspecific variation 5.2. Seasonalvariation 5.3 Variation in the effect of Juglansnigra on other.plants 5.4. Soil effects 6. Discussion Ke1'rvords: Allelopathy,crops, history, Juglan.s spp., juglone. phytoplankton,walnut, soil, TTCCS 1. INTRODUCTION The"rvalnuts" are referable to Juglans,a genusof 20-25species with a naturaldistribution acrossthe Northern Hemisphere and extending into SouthAmerica. Juglans is a memberof thefamily Juglandaceae which contains6 or 7 additionalgenera including Cruv,a, Cryptocctrva and a total of about 60 species. Walnuts are corrunerciallyimportant as the sourceof the ediblewalnut, the highly prizedtimber and as a specimentrees. Eating walnutsare usually obtarnedfrom -/. regia (the colrunonor Persianwalnut, erroneousll'known as the English walnut)- a nativeof SEEurope and Asia, which haslong been cultivated, but arealso sometin.res availablelocally from other speciessuch as J. nigra (back walnut) - a native of eastern North America andJ. ntajor, J. calfornica andJ. hindsii, native to the u,esternu.S. ILillis Grafting of supcrior fnrit-bearing scions of J. regia onlo rootstocksof hlrdier spccics.
    [Show full text]
  • Curriculum Vitae Name
    CURRICULUM VITAE NAME Kirk Broders ADDRESS PHONE Bioagricultural Sciences and Pest Management (970) 491-0850 College of Agricultural Sciences EDUCATION 2008 Ph D, The Ohio State University 2004 BS, University of Nebraska-Lincoln ACADEMIC POSITIONS 2017-2018 - Assistant Professor (College of Agricultural Sciences) 2016-2017 - Assistant Professor (College of Agricultural Sciences) 2015-2016 (College of Agricultural Sciences) OTHER POSITIONS August 2015 - Present Assistant Professor, BSPM, Colorado State University, Fort Collins, CO, United States. 2011 - 2015 Assistant Professor, University of New Hampshire, United States. 2009 - 2010 Post-doctoral Research Fellow, University of Guelph, United States. PUBLISHED WORKS Refereed Journal Articles Broders, K. D., Munck, I., Wyka, S., Iriarte, G., Beaudoin, E. (2015). Characterization of Fungal Pathogens Associated with White Pine Needle Damage (WPND) in Northeastern North America. Forests, 6(11), 4088-4104., Peer Reviewed/Refereed Munck, I. A., Livingston, W., Lombard, K., Luther, T., Ostrofsky, W. D., Weimer, J., Wyka, S., Broders, K. D. (2015). Extent and Severity of Caliciopsis Canker in New England, USA: An Emerging Disease of Eastern White Pine (Pinus strobus L.). Forests, 6(11), 4360-4373., Peer Reviewed/Refereed Boraks, A. W., Broders, K. D. (in press). Population genetics of butternut (Juglans cinerea) in the northeastern United States. Conservation Genetics., Peer Reviewed/Refereed Laflamme, G., Broders, K. D., Côté, C., Munck, I., Iriarte, G., Innes, L. (2015). Priority of Lophophacidium over Canavirgella: taxonomic status of Lophophacidium dooksii and Canavirgella banfieldii, causal agents of a white pine needle disease. Mycologia, 107(4), 745-753., Peer Reviewed/Refereed Broders, K. D., Boraks, A., Barbison, L., Brown, J. R., Boland, G.
    [Show full text]
  • Identification of Butternuts and Butternut Hybrids
    Purdue University Purdue extension FNR-420-W & Natural Re ry sou Forestry and Natural Resources st rc re e o s F Identification of Butternuts and Butternut Hybrids Lenny Farlee1,3, Keith Woeste1, Michael Ostry2, James McKenna1 and Sally Weeks3 1 USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 PURDUE UNIVERSITY 2 USDA Forest Service Northern Research Station, 1561 Lindig Ave. St. Paul, MN 55108 3 Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 Introduction Butternut (Juglans cinerea), also known as white walnut, is a native hardwood related to black walnut (Juglans nigra) and other members of the walnut family. Butternut is a medium-sized tree with alternate, pinnately compound leaves that bears large, sharply ridged and corrugated, elongated, cylindrical nuts born inside sticky green hulls that earned it the nickname lemon-nut (Rink, 1990). The nuts are a preferred food of squirrels and other wildlife. Butternuts were collected and eaten by Native Americans (Waugh, 1916; Hamel and Chiltoskey, 1975) and early settlers, who also valued butternut for its workable, medium brown-colored wood (Kellogg, 1919), and as a source of medicine (Johnson, 1884), dyes (Hamel and Chiltoskey, 1975), and sap sugar. Butternut’s native range extends over the entire north- eastern quarter of the United States, including many states immediately west of the Mississippi River, and into Canada. Butternut is more cold-tolerant than black walnut, and it grows as far north as the Upper Peninsula of Michigan, New Brunswick, southern Quebec, and Figure 1.
    [Show full text]
  • Brewing Beer with Native Plants (Seasonality)
    BREWING BEER WITH INDIANA NATIVE PLANTS Proper plant identification is important. Many edible native plants have poisonous look-alikes! Availability/When to Harvest Spring. Summer. Fall Winter . Year-round . (note: some plants have more than one part that is edible, and depending on what is being harvested may determine when that harvesting period is) TREES The wood of many native trees (especially oak) can be used to age beer on, whether it be barrels or cuttings. Woods can also be used to smoke the beers/malts as well. Eastern Hemlock (Tsuga Canadensis): Needles and young twigs can be brewed into a tea or added as ingredients in cooking, similar flavoring to spruce. Tamarack (Larix laricina): Bark and twigs can be brewed into a tea with a green, earthy flavor. Pine species (Pinus strobus, Pinus banksiana, Pinus virginiana): all pine species have needles that can be made into tea, all similar flavor. Eastern Red Cedar (Juniperus virginiana): mature, dark blue berries and young twigs may be made into tea or cooked with, similar in flavor to most other evergreen species. Pawpaw (Asimina triloba): edible fruit, often described as a mango/banana flavor hybrid. Sassafras (Sassafras albidum): root used to make tea, formerly used to make rootbeer. Similarly flavored, but much more earthy and bitter. Leaves have a spicier, lemony taste and young leaves are sometimes used in salads. Leaves are also dried and included in file powder, common in Cajun and Creole cooking. Northern Hackberry (Celtis occidentalis): Ripe, purple-brown fruits are edible and sweet. Red Mulberry (Morus rubra): mature red-purple-black fruit is sweet and juicy.
    [Show full text]
  • Early Season Softwood Cuttings Effective for Vegetative Propagation
    1973; Shreve, 1972; Shreke and Miles, 1972), J. regin (Cautam and Chauhan, 1990), J. sirzeizsis (Kwon et al.. 1990),and hybrids (Reil Early Season Softwood Cuttings et al., 1998: S~IT,1964). The objective of this study was to deter- Effective for Vegetative Propagation of mine the conditions necessary for successful hardwood or softwood cutting propagation of butternut. Preliminary studies in 1998 with Juglans cznerea hardwood cuttings collected in May resulted Paula M. Pijut%nd Melanie J. Moore in 12.5% rooting when cuttings were treated with 29 mM K-IBA, but only three out of six USf>d.Forest Service, NortJz Cerztml Research Station, 1992 Folnlell Avenue, plants surviked acclimatization to the tkld St. Paul, MN 55108 (Pijut and Barker, 1999). Softwood cuttings collected in June and July resulted in 63% to Additiclnal i~dexttsorcj.r. butternut, adventitious rooting, threatened species 70% rooting when cuttings were treated with Abstmct. Juglans cinerea L. (butternut) is a hardwood species valued for its wood and 62 mM K-IBA or 74 mM IBA, but again only edible nuts. Information on the vegetative propagation of this species is currently unavail- three out of 68 plants survived overwintering able. Our objective was to determine the conditions necessary for successful stem-cutting and acclimatization to the field. Based on propagation of butternut. In 1999 and 2000,10 trees (each year) were randomly selected these observations, for the years 1999 and from a 5- and 6-year-old butternut plantation located in Rosemount, Minn. Hardwood 2000, we examined the effects of propagation stem cuttings were collected in March, April, and May.
    [Show full text]
  • Acceptable Replacement Trees
    October 2000 BUILDING DIVISION Bulletin No. T-2 Acceptable Replacement Trees Acceptable Replacement Trees (other than Boulevard Replacement Trees) The following table lists acceptable replacement tree species and sizes. All plant material and planting techniques must comply with the latest edition of the BCSLA/BCNTA "Landscape Standard" City of Surrey Planning & Development Department, 14245 - 56 Avenue, Surrey, B.C. V3X 3A2 Telephone: 591-4441 City of Surrey Planning & Development Department REPLACEMENT TREES NOTES TO THE TABLE: (1) IN THE MINIMUM SIZE COLUMN, REFERENCE TO A FIGURE IN CENTIMETRES (cm) IS A MEASUREMENT OF TRUNK DIAMETER 15 cm ABOVE THE GROUND. REFERENCE TO A FIGURE IN METRES (m) IS A MEA- SUREMENT OF HEIGHT ABOVE THE GROUND. (2) THE COLUMN HEADING TYPE, L = LARGE, M = MEDIUM, S = SMALL AND F = FASTIGIATE (OR COLUMNAR) AND REFERS TO THE SIZE OF TREE AT MATURITY, NOT THE SIZE WHEN PLANTED. COMMON NAME BOTANICAL NAME PLANTING SIZE TYPE Hedge MapleAcer campestre Queen Elizabeth5 cm caliperS Vine Maple Acer circinatum 5 cm caliper S Amur Maple Acer ginnala 5 cm caliper S Bloodgood Japanese Maple Acer palmatum Bloodgood 5 cm caliper S Globe Maple Acer platanoides Globosum 5 cm caliper S Youngs Weeping Birch Betula pendula Youngii 5 cm caliper S Hackberry Celtis occidentalis 5 cm caliper S Eastern Redbud Cercis canadensis 5 cm caliper S Eddies White Wonder Dogwood Cornus Eddies White Wonder 5 cm caliper S Chinese Dogwood Cornus chinensis 5 cm caliper S Kousa Dogwood Cornus kousa 3 m height S Cornelian Cherry Cornus mas 3 m height
    [Show full text]
  • Juglandaceae (Walnuts)
    A start for archaeological Nutters: some edible nuts for archaeologists. By Dorian Q Fuller 24.10.2007 Institute of Archaeology, University College London A “nut” is an edible hard seed, which occurs as a single seed contained in a tough or fibrous pericarp or endocarp. But there are numerous kinds of “nuts” to do not behave according to this anatomical definition (see “nut-alikes” below). Only some major categories of nuts will be treated here, by taxonomic family, selected due to there ethnographic importance or archaeological visibility. Species lists below are not comprehensive but representative of the continental distribution of useful taxa. Nuts are seasonally abundant (autumn/post-monsoon) and readily storable. Some good starting points: E. A. Menninger (1977) Edible Nuts of the World. Horticultural Books, Stuart, Fl.; F. Reosengarten, Jr. (1984) The Book of Edible Nuts. Walker New York) Trapaceae (water chestnuts) Note on terminological confusion with “Chinese waterchestnuts” which are actually sedge rhizome tubers (Eleocharis dulcis) Trapa natans European water chestnut Trapa bispinosa East Asia, Neolithic China (Hemudu) Trapa bicornis Southeast Asia and South Asia Trapa japonica Japan, jomon sites Anacardiaceae Includes Piastchios, also mangos (South & Southeast Asia), cashews (South America), and numerous poisonous tropical nuts. Pistacia vera true pistachio of commerce Pistacia atlantica Euphorbiaceae This family includes castor oil plant (Ricinus communis), rubber (Hevea), cassava (Manihot esculenta), the emblic myrobalan fruit (of India & SE Asia), Phyllanthus emblica, and at least important nut groups: Aleurites spp. Candlenuts, food and candlenut oil (SE Asia, Pacific) Archaeological record: Late Pleistocene Timor, Early Holocene reports from New Guinea, New Ireland, Bismarcks; Spirit Cave, Thailand (Early Holocene) (Yen 1979; Latinis 2000) Rincinodendron rautanenii the mongongo nut, a Dobe !Kung staple (S.
    [Show full text]
  • Gen. Nov. on <I> Juglandaceae</I>, and the New Family
    Persoonia 38, 2017: 136–155 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/003158517X694768 Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales) H. Voglmayr1, L.A. Castlebury2, W.M. Jaklitsch1,3 Key words Abstract Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis s.str., and therefore the new genus Juglan- Ascomycota conis is described. Morphologically, the genus Juglanconis differs from Melanconis by light to dark brown conidia with Diaporthales irregular verrucae on the inner surface of the conidial wall, while in Melanconis s.str. they are smooth. Juglanconis molecular phylogeny forms a separate clade not affiliated with a described family of Diaporthales, and the family Juglanconidaceae is new species introduced to accommodate it. Data of macro- and microscopic morphology and phylogenetic multilocus analyses pathogen of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences revealed four distinct species systematics of Juglanconis. Comparison of the markers revealed that tef1 introns are the best performing markers for species delimitation, followed by cal, ms204 and tub2. The ITS, which is the primary barcoding locus for fungi, is amongst the poorest performing markers analysed, due to the comparatively low number of informative characters. Melanconium juglandinum (= Melanconis carthusiana), M. oblongum (= Melanconis juglandis) and M. pterocaryae are formally combined into Juglanconis, and J. appendiculata is described as a new species. Melanconium juglandinum and Melanconis carthusiana are neotypified and M. oblongum and Diaporthe juglandis are lectotypified. A short descrip- tion and illustrations of the holotype of Melanconium ershadii from Pterocarya fraxinifolia are given, but based on morphology it is not considered to belong to Juglanconis.
    [Show full text]