Identifying Species and Hybrids in the Genus Juglans by Biochemical Profiling of Bark
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Identification of Butternuts and Butternut Hybrids
Purdue University Purdue extension FNR-420-W & Natural Re ry sou Forestry and Natural Resources st rc re e o s F Identification of Butternuts and Butternut Hybrids Lenny Farlee1,3, Keith Woeste1, Michael Ostry2, James McKenna1 and Sally Weeks3 1 USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 PURDUE UNIVERSITY 2 USDA Forest Service Northern Research Station, 1561 Lindig Ave. St. Paul, MN 55108 3 Department of Forestry and Natural Resources, Purdue University, 715 W. State Street, West Lafayette, IN, 47907 Introduction Butternut (Juglans cinerea), also known as white walnut, is a native hardwood related to black walnut (Juglans nigra) and other members of the walnut family. Butternut is a medium-sized tree with alternate, pinnately compound leaves that bears large, sharply ridged and corrugated, elongated, cylindrical nuts born inside sticky green hulls that earned it the nickname lemon-nut (Rink, 1990). The nuts are a preferred food of squirrels and other wildlife. Butternuts were collected and eaten by Native Americans (Waugh, 1916; Hamel and Chiltoskey, 1975) and early settlers, who also valued butternut for its workable, medium brown-colored wood (Kellogg, 1919), and as a source of medicine (Johnson, 1884), dyes (Hamel and Chiltoskey, 1975), and sap sugar. Butternut’s native range extends over the entire north- eastern quarter of the United States, including many states immediately west of the Mississippi River, and into Canada. Butternut is more cold-tolerant than black walnut, and it grows as far north as the Upper Peninsula of Michigan, New Brunswick, southern Quebec, and Figure 1. -
Morphological Variability Between Geographical Provenances of Walnut Fruit (Juglans Mandshurica) in the Eastern Liaoning Province, P.R
Pol. J. Environ. Stud. Vol. 30, No. 5 (2021), 4353-4364 DOI: 10.15244/pjoes/131806 ONLINE PUBLICATION DATE: 2021-05-21 Original Research Morphological Variability between Geographical Provenances of Walnut Fruit (Juglans mandshurica) in the Eastern Liaoning Province, P.R. China Lijie Zhang1,2, Xiujun Lu1,2, Qiang Zhou1, Jifeng Deng1,2* 1College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning Province, People’s Republic of China 2Key Laboratory of Forest Tree genetics and Breeding of Liaoning Province, Shenyang, Liaoning Province, People’s Republic of China Received: 5 October 2020 Accepted: 18 December 2020 Abstract The eastern Liaoning Province of China has rich morphological diversity in walnut fruit, which is beneficial for selecting promising characters for marketability purposes. However, only a few reports have addressed morphological diversity in this region. In this study, J. mandshurica nuts and kernels from six geographical provenances were assessed for morphological traits, such as nut longitudinal diameter, nut lateral diameter, nut transverse diameter, mean diameter, nut weight, kernel weight, shell thickness, nut sutural thickness, kernel percentage, and index of roundness. Morphological traits proved to be quite variable and showed differences both within and among the geographical provenances. The frequency distribution of the traits had single peaks and followed a normal distribution. Principal component analysis revealed that 81.062% of the total variance was explained by the first three components. An unweighted PGM with averaging cluster analysis divided the geographical provenances into two groups; cluster I, containing five geographical provenances, and cluster II, containing only one. The study highlighted that the traits related to nut weight were of importance for discrimination, and Fushun is the optimal geographical provenance for breeding and selection. -
Inflorescence Dimorphism, Heterodichogamy and Thrips
Annals of Botany 113: 467–476, 2014 doi:10.1093/aob/mct278, available online at www.aob.oxfordjournals.org Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae) Tatsundo Fukuhara* and Shin-ichiro Tokumaru Faculty of Education, Fukuoka University of Education, 1-1 Akama-Bunkyo-machi, Munakata, Fukuoka, Japan * For correspondence. E-mail [email protected] Received: 22 July 2013 Returned for revision: 11 September 2013 Accepted: 14 October 2013 Published electronically: 3 December 2013 † Background and Aims Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show hetero- dichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, includ- ing Platycarya. † Methods Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. † Key results The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodi- chogamous–protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morph- ologies.Thrips pollination was suggested bythe frequent presence of thrips withattached pollen grains,the scarcityof other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage. -
5. JUGLANS Linnaeus, Sp. Pl. 2: 997. 1753. 胡桃属 Hu Tao Shu Trees Or Rarely Shrubs, Deciduous, Monoecious
Flora of China 4: 282–283. 1999. 5. JUGLANS Linnaeus, Sp. Pl. 2: 997. 1753. 胡桃属 hu tao shu Trees or rarely shrubs, deciduous, monoecious. Branchlets with chambered pith. Terminal buds with false-valved scales. Leaves odd-pinnate; leaflets 5–31, margin serrate or rarely entire. Inflorescences lateral or terminal on old or new growth; male spike separate from female spike, solitary, lateral on old growth, pendulous; female spike terminal on new growth, erect. Flowers anemophilous. Male flowers with an entire bract; bracteoles 2; sepals 4; stamens usually numerous, 6–40, anthers glabrous or occasionally with a few bristly hairs. Female flowers with an entire bract adnate to ovary, free at apex; bracteoles 2, adnate to ovary, free at apex; sepals 4, adnate to ovary, free at apex; style elongate with recurved branches; stigmas carinal, 2-lobed, plumose. Fruiting spike erect or pendulous. Fruit a drupelike nut with a thick, irregularly dehiscent or indehiscent husk covering a wrinkled or rough shell 2–4- chambered at base. Germination hypogeal. About 20 species: mainly temperate and subtropical areas of N hemisphere, extending into South America; three species in China. 1a. Leaflets abaxially pubescent or rarely glabrescent, margin serrate or rarely serrulate; nuts 2-chambered at base; husk indehiscent; shell rough ridged and deeply pitted .............................................................. 3. J. mandshurica 1b. Leaflets abaxially glabrous except in axils of midvein and secondary veins, margin entire to minutely serrulate; nuts 4-chambered at base; husk irregularly dehiscent into 4 valves; shell wrinkled or smooth ridged and deeply pitted. 2a. Leaflets 5–9; shell wrinkled, without prominent ridges .................................................................... -
Transthyretin Amyloid Fibril Disrupting Activities of Extracts and Fractions from Juglans Mandshurica Maxim
molecules Article Transthyretin Amyloid Fibril Disrupting Activities of Extracts and Fractions from Juglans mandshurica Maxim. var. cordiformis (Makino) Kitam. Niraj Chaudhary 1,2,†, Ryoko Sasaki 1,†, Tsuyoshi Shuto 1, Masato Watanabe 3, Teppei Kawahara 4 , Mary Ann Suico 1, Takeshi Yokoyama 5, Mineyuki Mizuguchi 5, Hirofumi Kai 1,* and Hari Prasad Devkota 2,3,* 1 Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; [email protected] (N.C.); [email protected] (R.S.); [email protected] (T.S.); [email protected] (M.A.S.) 2 Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto 862-0973, Japan 3 Department of Medicinal Botany, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; [email protected] 4 Useful and Unique Natural Products for Drug Discovery and Development (UpRoD), Program for Building Regional Innovation Ecosystems at Kumamoto University, Kumamoto 862-0973, Japan; [email protected] 5 Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; [email protected] (T.Y.); [email protected] (M.M.) * Correspondence: [email protected] (H.K.); [email protected] (H.P.D.); Tel.: +81-96-371-4405 (H.K.); +81-96-371-4381 (H.P.D.) † Both authors contributed equally. Received: 21 December 2018; Accepted: 29 January 2019; Published: 30 January 2019 Abstract: Transthyretin-related amyloidosis is a slowly progressive disorder caused by deposition of insoluble amyloid plaques formed by fibrillization of mutant or defective transthyretin (TTR) monomers that leads to neurodegeneration and organ failure. -
Reproduction and Potential Range Expansion of Walnut Twig Beetle Across the Juglandaceae
Biol Invasions (2018) 20:2141–2155 https://doi.org/10.1007/s10530-018-1692-5 ORIGINAL PAPER Reproduction and potential range expansion of walnut twig beetle across the Juglandaceae Andrea R. Hefty . Brian H. Aukema . Robert C. Venette . Mark V. Coggeshall . James R. McKenna . Steven J. Seybold Received: 10 June 2017 / Accepted: 19 February 2018 / Published online: 1 March 2018 Ó This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Abstract Biological invasions by insects that vector this insect has expanded its geographic range by plant pathogens have altered the composition of colonizing naı¨ve hosts. The objective of this study was natural and urban forests. Thousand cankers disease to characterize limits to, and variation within, the host is a new, recent example and is caused by the complex range of P. juglandis and infer the extent to which of walnut twig beetle, Pityophthorus juglandis, and hosts might constrain the geographic distribution of the fungus, Geosmithia morbida, on susceptible hosts, the insect. We examined colonization and reproduc- notably some Juglans spp. and Pterocarya spp. Host tion by P. juglandis in no-choice laboratory experi- colonization by P. juglandis may be particularly ments with 11 Juglans spp., one Pterocarya sp., and important for disease development, but the beetle’s two Carya spp. over 2 years and found that all but the host range is not known. In the United States and Italy, Carya spp. were hosts. Reproduction was generally greater on Juglans californica, J. hindsii, and J. nigra, than on J. -
Acceptable Replacement Trees
October 2000 BUILDING DIVISION Bulletin No. T-2 Acceptable Replacement Trees Acceptable Replacement Trees (other than Boulevard Replacement Trees) The following table lists acceptable replacement tree species and sizes. All plant material and planting techniques must comply with the latest edition of the BCSLA/BCNTA "Landscape Standard" City of Surrey Planning & Development Department, 14245 - 56 Avenue, Surrey, B.C. V3X 3A2 Telephone: 591-4441 City of Surrey Planning & Development Department REPLACEMENT TREES NOTES TO THE TABLE: (1) IN THE MINIMUM SIZE COLUMN, REFERENCE TO A FIGURE IN CENTIMETRES (cm) IS A MEASUREMENT OF TRUNK DIAMETER 15 cm ABOVE THE GROUND. REFERENCE TO A FIGURE IN METRES (m) IS A MEA- SUREMENT OF HEIGHT ABOVE THE GROUND. (2) THE COLUMN HEADING TYPE, L = LARGE, M = MEDIUM, S = SMALL AND F = FASTIGIATE (OR COLUMNAR) AND REFERS TO THE SIZE OF TREE AT MATURITY, NOT THE SIZE WHEN PLANTED. COMMON NAME BOTANICAL NAME PLANTING SIZE TYPE Hedge MapleAcer campestre Queen Elizabeth5 cm caliperS Vine Maple Acer circinatum 5 cm caliper S Amur Maple Acer ginnala 5 cm caliper S Bloodgood Japanese Maple Acer palmatum Bloodgood 5 cm caliper S Globe Maple Acer platanoides Globosum 5 cm caliper S Youngs Weeping Birch Betula pendula Youngii 5 cm caliper S Hackberry Celtis occidentalis 5 cm caliper S Eastern Redbud Cercis canadensis 5 cm caliper S Eddies White Wonder Dogwood Cornus Eddies White Wonder 5 cm caliper S Chinese Dogwood Cornus chinensis 5 cm caliper S Kousa Dogwood Cornus kousa 3 m height S Cornelian Cherry Cornus mas 3 m height -
Juglandaceae (Walnuts)
A start for archaeological Nutters: some edible nuts for archaeologists. By Dorian Q Fuller 24.10.2007 Institute of Archaeology, University College London A “nut” is an edible hard seed, which occurs as a single seed contained in a tough or fibrous pericarp or endocarp. But there are numerous kinds of “nuts” to do not behave according to this anatomical definition (see “nut-alikes” below). Only some major categories of nuts will be treated here, by taxonomic family, selected due to there ethnographic importance or archaeological visibility. Species lists below are not comprehensive but representative of the continental distribution of useful taxa. Nuts are seasonally abundant (autumn/post-monsoon) and readily storable. Some good starting points: E. A. Menninger (1977) Edible Nuts of the World. Horticultural Books, Stuart, Fl.; F. Reosengarten, Jr. (1984) The Book of Edible Nuts. Walker New York) Trapaceae (water chestnuts) Note on terminological confusion with “Chinese waterchestnuts” which are actually sedge rhizome tubers (Eleocharis dulcis) Trapa natans European water chestnut Trapa bispinosa East Asia, Neolithic China (Hemudu) Trapa bicornis Southeast Asia and South Asia Trapa japonica Japan, jomon sites Anacardiaceae Includes Piastchios, also mangos (South & Southeast Asia), cashews (South America), and numerous poisonous tropical nuts. Pistacia vera true pistachio of commerce Pistacia atlantica Euphorbiaceae This family includes castor oil plant (Ricinus communis), rubber (Hevea), cassava (Manihot esculenta), the emblic myrobalan fruit (of India & SE Asia), Phyllanthus emblica, and at least important nut groups: Aleurites spp. Candlenuts, food and candlenut oil (SE Asia, Pacific) Archaeological record: Late Pleistocene Timor, Early Holocene reports from New Guinea, New Ireland, Bismarcks; Spirit Cave, Thailand (Early Holocene) (Yen 1979; Latinis 2000) Rincinodendron rautanenii the mongongo nut, a Dobe !Kung staple (S. -
CONSERVATION ACTION PLAN for the RUSSIAN FAR EAST ECOREGION COMPLEX Part 1
CONSERVATION ACTION PLAN FOR THE RUSSIAN FAR EAST ECOREGION COMPLEX Part 1. Biodiversity and socio-economic assessment Editors: Yuri Darman, WWF Russia Far Eastern Branch Vladimir Karakin, WWF Russia Far Eastern Branch Andrew Martynenko, Far Eastern National University Laura Williams, Environmental Consultant Prepared with funding from the WWF-Netherlands Action Network Program Vladivostok, Khabarovsk, Blagoveshensk, Birobidzhan 2003 TABLE OF CONTENTS CONSERVATION ACTION PLAN. Part 1. 1. INTRODUCTION 4 1.1. The Russian Far East Ecoregion Complex 4 1.2. Purpose and Methods of the Biodiversity and Socio-Economic 6 Assessment 1.3. The Ecoregion-Based Approach in the Russian Far East 8 2. THE RUSSIAN FAR EAST ECOREGION COMPLEX: 11 A BRIEF BIOLOGICAL OVERVIEW 2.1. Landscape Diversity 12 2.2. Hydrological Network 15 2.3. Climate 17 2.4. Flora 19 2.5. Fauna 23 3. BIOLOGICAL CONSERVATION IN THE RUSSIAN FAR EAST 29 ECOREGION COMPLEX: FOCAL SPECIES AND PROCESSES 3.1. Focal Species 30 3.2. Species of Special Concern 47 3.3 .Focal Processes and Phenomena 55 4. DETERMINING PRIORITY AREAS FOR CONSERVATION 59 4.1. Natural Zoning of the RFE Ecoregion Complex 59 4.2. Methods of Territorial Biodiversity Analysis 62 4.3. Conclusions of Territorial Analysis 69 4.4. Landscape Integrity and Representation Analysis of Priority Areas 71 5. OVERVIEW OF CURRENT PRACTICES IN BIODIVERSITY CONSERVATION 77 5.1. Legislative Basis for Biodiversity Conservation in the RFE 77 5.2. The System of Protected Areas in the RFE 81 5.3. Conventions and Agreements Related to Biodiversity Conservation 88 in the RFE 6. SOCIO-ECONOMIC INFLUENCES 90 6.1. -
Heartnut Farming for Profit
Heartnut Farming for Profit Planning Your Orchard Regardless if you are looking for land to plant heartnut trees, Juglans ailantifolia var. cordiformis or you already own land, you need to be aware of the climate, soil and the conditions and where heartnut trees will flourish. You must focus on the hardiness and suitability requirements of your climatic region. Heartnut trees are originally from Japan, a humid, temperate maritime climate, so they will do best in a similar North American climatic region. That characteristic places them in a zone 6-7, near a large body of water, where moderated winter conditions and a degree of spring frost protection exist. Over the millennia the heartnut’s cousin, the native black walnut has adapted to the North American climate extremes. The heartnut in its gentler maritime climate has never needed to adapt with a thick outer bark to resist cold and south-west injury. All walnut species bear their female flowers in the terminal buds. The terminal buds leaf out first in the spring ahead of the lateral buds, exposing them to injury from late spring frosts. Black walnut has survived because it has evolved the practise of leafing out 2-3 weeks later than most other wild trees, including the Japanese heartnut, and so avoiding damage to flower buds. We generally recommend planting seedling Chinese chestnut trees (grown from seed and not cloned). The heartnut is an exception. The more usual Japanese walnut Juglans ailantifolia, has a nut shaped more like a black walnut, round and poor cracking. Occasionally, this species has evolved off-spring that produces a more flattened nut that takes on the shape of a valentine heart and so the name, heartnut. -
Juglans Cinerea L
R E S E A R C H A R T I C L E ABSTRACT: To mitigate the loss of native tree species threatened by non-native pathogens, managers need to better understand the conservation status of remaining populations and the conditions that favor successful regeneration. Populations of Juglans cinerea L. (butternut), a wide-ranging riparian species, • have been devastated by butternut canker, a disease caused by a non-native fungal pathogen. We as- sessed J. cinerea within Great Smoky Mountains National Park (GSMNP) to determine post-disease survivorship and health, recruitment history, environmental conditions associated with survival, and the Conservation Status extent of hybridization with a non-native congener. Monitoring records were used to locate and collect data for 207 J. cinerea trees in 19 watersheds. Tree cores were collected from a subset of individuals to of a Threatened Tree assess recruitment history. We sampled vegetation plots within areas that contained J. cinerea to assess site conditions and overstory species composition of characteristic habitat. We collected leaf samples for Species: Establishing genetic analysis to determine the frequency of hybridization. Our reassessment of monitoring records suggests that J. cinerea abundance in GSMNP has declined due to butternut canker and thirty years of a Baseline for poor regeneration. Populations displayed continuous recruitment following Park establishment (1934) until around 1980, after which regeneration declined drastically. Ordination analysis revealed that J. Restoration of Juglans cinerea in the contemporary forest was associated with greater distance from homesites and reduced basal area of competing species. Hybrids comprised a small portion of sampled trees. The presence of cinerea L.