A Functional and Performance-Oriented Comparison of Transition Mechanisms for Internet Transition from Ipv4 to Ipv6 Protocol

Total Page:16

File Type:pdf, Size:1020Kb

A Functional and Performance-Oriented Comparison of Transition Mechanisms for Internet Transition from Ipv4 to Ipv6 Protocol A Functional and Performance-Oriented Comparison of Transition Mechanisms for Internet Transition from IPv4 to IPv6 Protocol A Nejc Škoberne T F C I S D P C I S Ljubljana, 2013 . A Functional and Performance-Oriented Comparison of Transition Mechanisms for Internet Transition from IPv4 to IPv6 Protocol A Nejc Škoberne T F C I S D P C I S Ljubljana, 2013 . APPROVAL I hereby declare that this submission is my own work and that to the best of my knowledge, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgement has been made. — Nejc Škoberne — December 2013 T dr. Mojca Ciglarič Assistant Professor of Computer and Information Science dr. Andrej Kos Associate Professor of Electrical Engineering dr. Zoran Bosnić Assistant Professor of Computer and Information Science Dr Olaf Maennel Lecturer of Computer Science Loughborough University . PREVIOUS PUBLICATIONS I hereby declare that the research reported herein was previously published/submitted for publication in peer reviewed journals or publicly presented at the following occa- sions: [1] N. Škoberne, O. Maennel, I. Phillips, R. Bush, J. Žorž and M. Ciglarič. IPv4 Address Sharing Mechanism Classification and Tradeoff Analysis. IEEE/ACM Transactions on Networking, volume PP, number 99, 2013. doi: 10.1109/TNET.2013.2256147 [2] N. Škoberne and M. Ciglarič. Practical Evaluation of Stateful NAT64/DNS64 Translation. Advances in Electrical and Computer Engineering, volume 11, number 3, pages 49-54, 2011. doi: 10.4316/aece.2011.03008 I certify that I have obtained written permission from the copyright owner(s) to include the above published material(s) in my thesis. I certify that the above material describes work I have completed during my registration as a postgraduate student at the University of Ljubljana. To my darling wife Mica, the true master of patience. Univerza v Ljubljani Fakulteta za računalništvo in informatiko Nejc Škoberne Zmogljivostna in funkcionalna primerjava prehodnih mehanizmov pri prehodu interneta s protokola IPv4 na IPv6 POVZETEK V času, ko je bil internet osnovan, je ideja o računalniškem omrežju, ki bi povezova- lo milijarde naprav po celotnem planetu, sodila bolj v znanstveno fantastiko kot kam drugam. Tudi to je eden izmed razlogov, zakaj je na internet v zadnjih 20 letih nastala precejšnja gneča. Glavni razlog je v tem, da je bil protokol IP eden ključnih proto- kolov za delovanje Interneta, razvit kot eksperimentalni protokol, ki je “pobegnil iz laboratorija”. Manj kot desetletje zatem je internetna skupnost ugotovila, da bo na- slovov glede na trend porabe kmalu zmanjkalo in začele so nastajati prve rešitve, ki bi težave naslovile. Prehod na brezrazredno usmerjanje med domenami (angl. Classless Inter-Domain Routing, CIDR) je bil zelo pomemben za nadaljnjo rast interneta, ven- ,dar kljub temu ni zadostoval. Dejstvo, da je možno nasloviti le internetnih naprav je predstavljalo razlog za resno zaskrbljenost, ki je bila začasno odpravljena z agresivno uporabo mehanizmov za prevajanje omrežnih naslovov. Žal je ta tehnologija hkrati tudi resno ogrozila enega od ključnih načel interneta – povezljivost od točke do točke. Kot edina možna dolgoročna rešitev za izčrpanost naslovnega prostora IPv4 in za povezljivost od točke do točke se kaže prehod interneta s “starega” protokola IPv4 na “novi” protokol IPv6. Prehod je potreben, ker sta protokola IPv4 in IPv6 nezdružljiva. Izvedba prehoda tako velikega in kompleksnega sistema kot je internet, ni enostav- na naloga. Posebno ne v primeru, če izvajanje začasnih “grdih” rešitev vedno znova (začasno) odpravlja najbolj pereče težave in če prava motivacija za prehod izgleda ze- lo oddaljena in zamegljena. Za izvedbo prehoda je bilo od nastanka protokola IPv6 predlaganih mnogo različnih prehodnih mehanizmov, ki naj bi prehod poenostavili in ga naredili manj bolečega za uporabnike. Znanstveni pristop k razvoju, analizi in vre- dnotenju teh mehanizmov je ključen, če se želimo izogniti negativnim učinkom med prehodom kot tudi med obdobjem sobivanja protokolov IPv4 in IPv6. V tej disertaciji smo se temeljito poglobili v problem prehoda Interneta na protokol i . ii Povzetek N. Škoberne IPv6. Čeprav je bil protokol IPv6 standardiziran več kot desetletje in pol nazaj, smo pokazali, da se prehod ni še niti dobro začel. Ozrli smo se tudi nazaj in preučili, kako se je prehod na protokol IPv6 začel in izvajal skozi čas ter identificirali glavne zaviral- ne in pospeševalne dejavnike. Nadalje smo identificirali dve glavni skupini prehodnih mehanizmov: mehanizmi za umestitev IPv6, ki omogočajo uvedbo protokola IPv6 v omrežja, ki uporabljajo izključno protokol IPv4; ter mehanizme za deljenje naslovov IPv4, ki zagotavljajo dolgoročno sobivanje protokolov IPv4 in IPv6 na Internetu tako, da omogočajo ponudnikom internetnih storitev dodeljevanje enega naslova IPv4 več naročnikom hkrati. Analizirali smo tudi trenutno stanje prehoda in pripravili sistema- tičen pregled velikega števila prehodnih mehanizmov, ki so bili kdaj koli predlagani oz. objavljeni. Mehanizme za deljenje naslovov IPv4 smo obravnavali še posebej temeljito. Na podlagi ugotovitve, da je zelo težko znanstveno vrednotiti dejanske predloge različnih mehanizmov, smo razvili klasifikacijo mehanizmov na podlagi petih dimenzij. Obsto- ječe mehanizme za deljenje naslovov IPv4 smo nato klasificirali v devet razredov ter analizirali lastnosti mehanizmov tako, da smo preučili možne vrednosti, ki jih posame- zni mehanizmi zasedajo v vsaki dimenziji. Da bi omogočili praktikom, da bi razumeli kompromise med različnimi razredi mehanizmov, smo v okviru analize kompromisov ovrednotili ključne prednosti in slabosti posameznih razredov. Z določenjem dimenzij klasifikacije smo hkrati skonstruirali 5-dimenzionalni pro- stor možnih prehodnih mehanizmov za deljenje naslovov IPv4. Tako smo lahko iden- tificirali tudi kombinacijo lastnosti, ki so postale podlaga za nov uporaben mehanizem za deljenje naslovov IPv4, imenovan AP64. Zanj smo definirali arhitekturo in vse po- trebne funkcije ter obrazložili vse tehnične podrobnosti za implementacijo. Nazadnje smo predlagali ogrodje za teoretično analizo oz. vrednotenje zmogljivosti mehanizmov za deljenje naslovov IPv4. Spoznali smo, da vrednotenje zmogljivosti me- hanizmov nasploh predstavlja velik izziv, saj so ti kompleksni in razmeroma zahtevni za implementacijo. Poleg tega je kvalitetne implementacije teh mehanizmov razomeroma težko pridobiti. Da bi se temu izognili, smo razbili posamezne razrede mehanizmov na osnovne operacije nad paketi in eksperimentalno ovrednotili njihovo zmogljivost. Ukvarjali smo se s prostorsko in časovno zahtevnostjo mehanizmov, kar omogoča, da končno ogrodje lahko uporabimo kot orodje za vrednotenje zmogljivosti prihodnjih mehanizmov tako, da jih najprej klasificiramo glede na našo klasifikacijo, nato pa iden- tificiramo osnovne operacije, ki v njih nastopajo. iii Ključne besede: Prehod na protokol IPv6, prehodni mehanizmi na IPv6, deljenje na- slovov IPv4, NAT na ravni ponudnika (CGN), naslov plus vrata (A+P), vrednotenje zmogljivosti, prevajanje naslovne družine, prevajanje omrežnih naslovov (NAT), tune- liranje . University of Ljubljana Faculty of Computer and Information Science Nejc Škoberne A Functional and Performance-Oriented Comparison of Transition Mechanisms for Internet Transition from IPv4 to IPv6 Protocol ABSTRACT A computer network that would cover the entire planet and connect billions of devices was beyond imagination when the Internet was first conceived. Consequently, over the last 20 years, the Internet has become a crowded place. is is because the IP pro- tocol that makes the Internet possible was an experimental protocol that “escaped from the lab”. e Internet address exhaustion problem was identified less than a decade later, when the first proposal solutions also began to emerge. Switching to the Classless Inter-Domain Routing (CIDR) scheme was crucial for continued Internet growth, but insufficient to resolve the resulting problematic. Being able to address only Internet nodes started becoming a serious concern that was subsequently temporarily dismissed due to the aggressive use of Network Address Translation (NAT). As collateral dam- age, NAT heavily endangered one of the core principles of the Internet–end-to-end connectivity. e only possible long-term solution to the IPv4 address exhaustion and end-to- end connectivity problem appears to be transitioning the Internet from the “old” IPv4 protocol to the “new” IPv6 protocol. is must be done because IPv4 and IPv6 are incompatible. However, transitioning such a large and complex system is not an easy task, particularly if applying “hacks” continues to solve the most difficult problems and if motivation appears to be far off and misty. Many transition mechanisms have been proposed in order to solve this task and make the transition less painful for users. A scientific approach to the development, analysis and evaluation of these mechanisms is crucial in order to avoid as much hassle as possible during the transition as well as during the coexistence period of the IPv4 and IPv6 protocols. In this thesis, we thoroughly address the IPv6 transition problem. Even though the IPv6 protocol was standardized more than a decade and a half ago, we show that the transition has not yet gained its
Recommended publications
  • Uila Supported Apps
    Uila Supported Applications and Protocols updated Oct 2020 Application/Protocol Name Full Description 01net.com 01net website, a French high-tech news site. 050 plus is a Japanese embedded smartphone application dedicated to 050 plus audio-conferencing. 0zz0.com 0zz0 is an online solution to store, send and share files 10050.net China Railcom group web portal. This protocol plug-in classifies the http traffic to the host 10086.cn. It also 10086.cn classifies the ssl traffic to the Common Name 10086.cn. 104.com Web site dedicated to job research. 1111.com.tw Website dedicated to job research in Taiwan. 114la.com Chinese web portal operated by YLMF Computer Technology Co. Chinese cloud storing system of the 115 website. It is operated by YLMF 115.com Computer Technology Co. 118114.cn Chinese booking and reservation portal. 11st.co.kr Korean shopping website 11st. It is operated by SK Planet Co. 1337x.org Bittorrent tracker search engine 139mail 139mail is a chinese webmail powered by China Mobile. 15min.lt Lithuanian news portal Chinese web portal 163. It is operated by NetEase, a company which 163.com pioneered the development of Internet in China. 17173.com Website distributing Chinese games. 17u.com Chinese online travel booking website. 20 minutes is a free, daily newspaper available in France, Spain and 20minutes Switzerland. This plugin classifies websites. 24h.com.vn Vietnamese news portal 24ora.com Aruban news portal 24sata.hr Croatian news portal 24SevenOffice 24SevenOffice is a web-based Enterprise resource planning (ERP) systems. 24ur.com Slovenian news portal 2ch.net Japanese adult videos web site 2Shared 2shared is an online space for sharing and storage.
    [Show full text]
  • Ipv4 Address Sharing Mechanism Classification And
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE/ACM TRANSACTIONS ON NETWORKING 1 IPv4 Address Sharing Mechanism Classification and Tradeoff Analysis Nejc Škoberne, Olaf Maennel, Iain Phillips, Randy Bush, Jan Zorz, and Mojca Ciglaric Abstract—The growth of the Internet has made IPv4 addresses andonlyone/22prefix (1024 IPv4 addresses). Such allocations a scarce resource. Due to slow IPv6 deployment, IANA-level IPv4 are too small to satisfy current growth rates. address exhaustion was reached before the world could transition The only long-term solution to the IPv4 address exhaustion to an IPv6-only Internet. The continuing need for IPv4 reacha- bility will only be supported by IPv4 address sharing. This paper problem is transition to the IPv6 protocol, which enables ad- reviews ISP-level address sharing mechanisms, which allow In- dressing large numbers of Internet devices [2]. However, today ternet service providers to connect multiple customers who share we observe little IPv6 deployment. IPv6 penetration at content a single IPv4 address. Some mechanisms come with severe and un- providers (top 500 Web sites) is about 24% globally [3] as of predicted consequences, and all of them come with tradeoffs. We March 15, 2013, while is somethingmorethan1%attheuser propose a novel classification, which we apply to existing mech- anisms such as NAT444 and DS-Lite and proposals such as 4rd, side [4] as of the same date. As IPv4 and IPv6 are incompatible, MAP, etc. Our tradeoff analysis reveals insights into many prob- IPv6 designers envisioned a dual-stack deployment [5], with the lems including: abuse attribution, performance degradation, ad- aim that by the time the IPv4 address space became depleted, dress and port usage efficiency, direct intercustomer communica- IPv6 would be universally deployed.
    [Show full text]
  • A Review and Qualitative Analysis of Ipv6 and Ipv4 Interoperability Technologies
    A Review and Qualitative Analysis of IPv6 and IPv4 Interoperability Technologies Antti Maula Helsinki University of Technology [email protected] Abstract structured as follows: section 2 contains descriptions of ex- isting solutions and their main technical features. Section 3 Deployment of IPv6 has been delayed even though the stan- presents some discussion about the state of the technologies dard has existed for over ten years and the number of free and section 4 presents the required future work and the final IPv4 addresses is decreasing fast. Some obstacles in deploy- conclusions are drawn in section 5. ment are economic but also technical issues remain. The Internet cannot be converted to IPv6 overnight, thus a transi- tion period is required during which both protocols co-exist 2 Related technologies and work together seamlessly. There is a vast amount of in- teroperability technologies available and this paper presents This section presents the existing IPv6 and IPv4 interop- proposed solutions to operate IPv6-only network segments erability technologies and their technical details. Interop- in cooperation with IPv4-only network segments. erability technologies include techniques which allow use of isolated IPv6 subnets in mostly IPv4 based Internet and KEYWORDS: IPv6, IPv4, interoperability, technology re- all of these technologies are intended to be used only dur- view, qualitative analysis ing the transition period and they should automatically stop working when underlying network infrastructure has imple- mented full IPv6 support. Some of the methods presented 1 Introduction here are implemented only by software while others re- quire additional hardware to function. These two models IP protocol version 4 (IPv4), which is currently used in most are namely “End-host” and “Middlebox” architectures, in parts of the internet, is becoming outdated.
    [Show full text]
  • Routing Loop Attacks Using Ipv6 Tunnels
    Routing Loop Attacks using IPv6 Tunnels Gabi Nakibly Michael Arov National EW Research & Simulation Center Rafael – Advanced Defense Systems Haifa, Israel {gabin,marov}@rafael.co.il Abstract—IPv6 is the future network layer protocol for A tunnel in which the end points’ routing tables need the Internet. Since it is not compatible with its prede- to be explicitly configured is called a configured tunnel. cessor, some interoperability mechanisms were designed. Tunnels of this type do not scale well, since every end An important category of these mechanisms is automatic tunnels, which enable IPv6 communication over an IPv4 point must be reconfigured as peers join or leave the tun- network without prior configuration. This category includes nel. To alleviate this scalability problem, another type of ISATAP, 6to4 and Teredo. We present a novel class of tunnels was introduced – automatic tunnels. In automatic attacks that exploit vulnerabilities in these tunnels. These tunnels the egress entity’s IPv4 address is computationally attacks take advantage of inconsistencies between a tunnel’s derived from the destination IPv6 address. This feature overlay IPv6 routing state and the native IPv6 routing state. The attacks form routing loops which can be abused as a eliminates the need to keep an explicit routing table at vehicle for traffic amplification to facilitate DoS attacks. the tunnel’s end points. In particular, the end points do We exhibit five attacks of this class. One of the presented not have to be updated as peers join and leave the tunnel. attacks can DoS a Teredo server using a single packet. The In fact, the end points of an automatic tunnel do not exploited vulnerabilities are embedded in the design of the know which other end points are currently part of the tunnels; hence any implementation of these tunnels may be vulnerable.
    [Show full text]
  • IPV6 MIGRATION and ADOPTION in INDIA by Shweta Satao
    Episteme: an online interdisciplinary, multidisciplinary & multi-cultural journal Bharat College of Arts and Commerce, Badlapur, MMR, India Volume 8, Issue 3 December 2019 IPV6 MIGRATION AND ADOPTION IN INDIA By Shweta Satao Abstract One of the major reasons for the IPv6 transition is because the allocation of IPv4 address space is running out of control and is gradually being exhausted. Though the Regional Internet Registries of all the continents are still allocating IPv4 addresses. Annually hundreds of millions of new smart phones that require internet connectivity are being sold. These demands for mobile phone have made the demand for internet connectivity to be increasing exponentially. We are in the age of smart mobile devices, social networking, and cloud computing and other new internet developments that are linked to the internet. There is need for Service Providers to ensure there is good, smooth and reliable internet connectivity via IP addresses. These makes IP addresses critical resources that sustain the business growth of service providers and also sustains an exponential economic growth generated through the internet. As hundreds of millions of mobile users are connected to the internet, there is need for a network that is ready for an internet that have both IPv4 and IPv6 addresses “IPv4 and IPv6 networks are not directly interoperable but the technologies used in the transition mechanisms allow hosts on either network to be involved in networking with opposing networks”. The transition mechanisms include: - Dual Stack Techniques - IPv6 over IPv4 tunneling techniques: 6to4 tunnel, Tunnel broker, Manually Configured Tunnel, ISATAP tunnels, IPv6 over IPv4 GRE tunnel.
    [Show full text]
  • Internet Engineering Task Force G. Chen Internet-Draft T
    Internet Engineering Task Force G. Chen Internet-Draft T. Yang Intended status: Informational L. Li Expires: January 5, 2012 H. Deng China Mobile July 4, 2011 IPv6 Practices on China Mobile IP Bearer Network draft-chen-v6ops-ipv6-bearer-network-trials-00 Abstract This memo has introduced IPv6 practices on China Mobile IP bearer network, in which IP backbone network and broadband access routers have been covered. In the practice, IPv6 protocol conformance and data packages forwarding capabiliteis have been tested in multi- vendors environments. Several IPv6 transition schemes have been deployed to validate interoperabilities. Based on concrete testing data, IPv6-enable deployment experiencies have been learned to share with community. Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 5, 2012. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document.
    [Show full text]
  • Pf3e Index.Pdf
    INDEX Note: Pages numbers followed by f, n, priority-based queues, 136–145 or t indicate figures, notes, and tables, match rule for queue assignment, respectively. 137–138 overview, 134–135 Symbols performance improvement, 136–137 # (hash mark), 13, 15 queuing for servers in DMZ, ! (logical NOT) operator, 42 142–144 setting up, 135–136 A on FreeBSD, 135–136 on NetBSD, 136 Acar, Can Erkin, 173 on OpenBSD, 135 ACK (acknowledgment) packets transitioning to priority and class-based bandwidth allocation, queuing system, 131–133 139–140 anchors, 35–36 HFSC algorithm, 124, 126, 142 authpf program, 61, 63 priority queues, 132, 137–138 listing current contents of, 92 two-priority configuration, loading rules into, 92 120–121, 120n1 manipulating contents, 92 adaptive.end value, 188 relayd daemon, 74 adaptive firewalls, 97–99 restructuring rule set with, 91–94 adaptive.start value, 188 tagging to help policy routing, 93 advbase parameter, 153–154 ancontrol command, 46n1 advskew parameter, 153–154, 158–159 antispoof tool, 27, 193–195, 194f aggressive value, 192 ARP balancing, 151, 157–158 ALTQ (alternate queuing) framework, atomic rule set load, 21 9, 133–145, 133n2 authpf program, 59–63, 60 basic concepts, 134 basic authenticating gateways, class-based bandwidth allocation, 60–62 139–140 public networks, 62–63 overview, 135 queue definition, 139–140 tying queues into rule set, 140 B handling unwanted traffic, 144–145 bandwidth operating system-based queue actual available, 142–143 assignments, 145 class-based allocation of, 139–140 overloading to
    [Show full text]
  • Ipv6 – from Assessment to Pilot
    IPv6 – From Assessment to Pilot James Small CDW Advanced Technology Services Session Objectives State of Things Business Case Plan Design Implement Security & Operations Current Trends Depletion replaced by Growth Population penetration Geoff Huston’s IPv4 Address Report Multiple mobile device penetration The Internet of Things – M2M The Internet of Everything Current Trends Global growth: Penetration doubling every 9 months US penetration: IPv6 Deployment: 24.76% Prefixes: 40.78% Transit AS: 59.48% Content: 47.72% Google’s global IPv6 statistics graph Users: 3.92% Relative Index: 6.2 out of 10 Global IPv6 growth Graphs from Cisco Live Orlando 2013 – PSOSPG 1330 • US Growth/Penetration is Double the Global Rate • Critical mass in US next year (10% penetration) Opinions on Action Gartner – Enterprises must start upgrading their Internet presence to IPv6 now Deloitte – In short, we recommend starting (v6 deployment) now “Starting sooner can give organizations enough lead-time for a deliberate, phased roll-out, while waiting could lead to a costly, risky fire drill.” Roadmap State of things Business Case Plan Design Implement Security & Operations New Trends IPv6-Only Data Centers and Networks (especially mobile ones) on the rise Internet-of-Things – many key protocols are IPv6 only (IPv4 doesn’t have necessary scale) Many new trends are IPv6-Only (e.g. IoT) Smart Factories/Buildings/Cities/Grid Intelligent Transportation System General Business Case 65% of Cisco Enterprise Technology Advisory Board members will have IPv6 web sites by the end of this year (2013) Top drivers for IPv6 BYOD Globalization Internet Evolution/Internet Business Continuity (B2B/B2C) Legal Business Cases Mobile (Tablets/Smartphones) LTE/4G an IPv6 technology Multinational Firms – Europe far down the IPv6 path, where are you compared to your counterparts? Federal – Goal for full IPv6 deployment by 2014 with some trying to eliminate IPv4 by years end (VA) Legal Business Cases IPv6 Critical mass is coming next year (2014) – B2B, B2C, M2M, and other innovation will follow.
    [Show full text]
  • Ipv6 Multicast Layer 3 Features
    Chapter 13 IPv6 Multicast Support Prerequisites for IPv6 Multicast 13 IPv6 Multicast Support • Prerequisites for IPv6 Multicast, page 13-1 • Restrictions for IPv6 Multicast, page 13-1 • Information About IPv6 Multicast Support, page 13-2 • How to Configure IPv6 Multicast Support, page 13-4 • Verifying the IPv6 Multicast Layer 3 Configuration, page 13-4 Tip For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page: http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html Participate in the Technical Documentation Ideas forum Prerequisites for IPv6 Multicast None. Restrictions for IPv6 Multicast • The PFC and DFCs provide hardware support for the following: – Completely switched IPv6 multicast flows – IPv6 PIM-Sparse Mode (PIM-SM) (S,G) and (*,G) forwarding – Multicast RPF check for IPv6 PIM-SM (S,G) traffic using the NetFlow table – Rate limiting of IPv6 PIM-SM (S,G) traffic that fails the multicast RPF check – Static IPv6 multicast routes – SSM Mapping for IPv6 (PIM-SSM) – IPv6 multicast forwarding information base (MFIB) using the NetFlow table – IPv6 distributed MFIB (dMFIB) using the NetFlow table – Link-local and link-global IPv6 multicast scopes – Egress multicast replication with the ipv6 mfib hardware-switching command – Ingress interface statistics for multicast routes (egress interface statistics not available) – RPR and RPR+ redundancy mode (see Chapter 9, “Route Processor Redundancy
    [Show full text]
  • Área De Ingeniería Telemática Dpto. Automática Y Computación Soluciones
    Transición a IPv6 Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ Soluciones ‣ Doble pila ‣ Dispositivos con IPv4 e IPv6 ‣ Túneles ‣ Comunicar IPv6 a través de zonas IPv4 ‣ Traducción ‣ Comunicar hosts IPv6 con IPv4 IPv6 Dual stack Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ Dual stack (Doble pila) ‣ Hosts con pila IPv4 e IPv6 ‣ Las aplicaciones deciden: PF/AF_INET o PF/AF_INET6 ‣ Si manejan direcciones pueden elegir ‣ Si manejan nombres según que devuelva el DNS ‣ RFC para elegir según reglas Dual stack ‣ Primero IPv6 ‣ Primero IPv4? ‣ Elegir según reglas? IPv6 Túneles Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ Tunel manual ‣ Cualquier protocolo de VPN/tunnel que soporte IPv6 sobre paquetes IPv4 ‣ Tuneles IPv6 sobre IPv4 (RFC 4213) proto=41 ‣ GRE (RFC 2473) ‣ OpenVPN, socat o similares ‣ … ‣ Túneles estáticos (entre IPs conocidas) ‣ Túneles dinámicos? ‣ De un cliente en cualquier IP a un proveedor? ‣ road-warriors, clientes residenciales con IP dinámica… Tuneles semi-automáticos/dinámicos ‣ Un lado se mantiene conectado a un proveedor ‣ AICCU (Automatic IPv6 Connectivity Client Utility) ‣ Tuneles ‣ 6in4 IPv6 sobre IPv4 ‣ 6in4 con heartbeat (el proveedor deshabilita el túnel si no le llegan heartbeats) ‣ AYIYA (anything in anything) para IPv6 sobre UDP para poder saltar NATs ‣ Tunnel brokers Tunnel broker Túneles automáticos ‣ Configurar tuneles automaticamente para que hosts en islas IPv6 se puedan comunicar
    [Show full text]
  • Implementing Ipv6: Experiences at KAME Project
    Implementing IPv6: experiences at KAME project Jun-ichiro Hagino, IIJ research laboratory itojun@{iijlab.net,kame.net} Outline What is IPv6, and why IPv6 (brief summary) What is KAME project Some technical insights observed at KAME Implmentation status What are the TODOs, issues from both specification/implementation What is IPv6? Expansion of address space - 32bit -> 128bit 32bit: 4.3 billion nodes maximum not sufficient, blocking new IP-based applications from appearing 128bit: 3.4 x 10^38 nodes maximum Make new technologies mandatory IPv4: designed in 1970’s IPv6: designed in 1990’s autoconfiguration, multicast, security, ... Why? - IPv4 address space is filled up, NAT is killing us all When? - Already there, so you should How? - (next slide) How to operate IPv6? IPv6 is "IP with bigger address space", almost no difference with IPv4 bigger address space makes a huge difference Base spec NAT-free 128bit address, simpler base header, extensible header format Enables many future application deployment and uses Routing - OSPFv3, RIPng, BGP4+ QoS - diffserv, RSVP (separate effort from IPv6 itself) more friendly than IPv4 Mobility - mobile-ip6 No foreign agent necessary Security - IPsec (separate effort from IPv6 itself) A "fully conformant IPv6 implementation" must have IPsec code Autoconfiguration stateless autoconf, DHCPv6 Multicast - PIM, MLD (= IGMP) Applications - HTTP, FTP, VoIP, whatever you do with IPv4 New applications would appear when IPv6 hits the critical mass Problem we had in 1995... IPv6 specification is out, but there’s
    [Show full text]
  • Ipv6, a Passport to the Future Internet
    AFNIC’s Issue Papers IPv6, A Passport For The Future Internet 1 - Background 2 - Specification for the new version of IP (v6) Executive 3 - What’s new with IPv6? summary 4 - What "exhaustion of IPv4 space" After a historical review situating the means, and what lies behind it? exhaustion of the IPv4 address space, this paper underlines the real issues involved 5 - The integration of IPv6: how, who in this phenomenon and in the inevitable and where? transition from IPv4 to IPv6. It then briefly highlights the contributions of IPv6, recalls 6 - IPv6 integration: communication the roles of the various Internet stakeholders models, classification and describes the communication models for which IPv6 integration should be prioritized. 7 - A few examples of transition A set of illustrative but non-limitative mechanisms examples of transition mechanisms are given in order to show IPv6 integration in practice 8 - A few practical recommendations within various technical contexts. Finally, this for IPv6 integration paper makes operational recommendations to support the deployment of IPv6 and 9 - Seize the IPv6 opportunity – now! launches an appeal for stakeholders to seize – immediately – the opportunities provided 10 - Useful references by IPv6, in order to make the "The Future Internet" an open field for innovation. 1/10 IPv6, A Passport For The Future Internet Copyright AFNIC 2011 Reproduction of the texts authorized subject to acknowledgement of source: www.afnic.fr 1 Background The Internet was invented in the early 1970s in exceptional allocation of "Class B"1, address blocks, the United States and grew quite slowly until the the reuse of Class C blocks2, then the abolition of late 1980s.
    [Show full text]