Internet Engineering Task Force G. Chen Internet-Draft T

Total Page:16

File Type:pdf, Size:1020Kb

Internet Engineering Task Force G. Chen Internet-Draft T Internet Engineering Task Force G. Chen Internet-Draft T. Yang Intended status: Informational L. Li Expires: January 5, 2012 H. Deng China Mobile July 4, 2011 IPv6 Practices on China Mobile IP Bearer Network draft-chen-v6ops-ipv6-bearer-network-trials-00 Abstract This memo has introduced IPv6 practices on China Mobile IP bearer network, in which IP backbone network and broadband access routers have been covered. In the practice, IPv6 protocol conformance and data packages forwarding capabiliteis have been tested in multi- vendors environments. Several IPv6 transition schemes have been deployed to validate interoperabilities. Based on concrete testing data, IPv6-enable deployment experiencies have been learned to share with community. Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 5, 2012. Copyright Notice Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents Chen, et al. Expires January 5, 2012 [Page 1] Internet-Draft IPv6-bearer-network-trials July 2011 carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English. Chen, et al. Expires January 5, 2012 [Page 2] Internet-Draft IPv6-bearer-network-trials July 2011 Table of Contents 1. Introduction . 4 2. IPv6 trial on IP backbone network . 4 2.1. IP Backbone Topology for Trials . 4 2.2. IPv6-only Routing Protocol Testing . 6 2.3. Dual-stack Routing Protocol Testing . 7 2.4. 6PE/6vPE Protocol Testing . 7 2.5. Tunnel Protocol Interoperabilities . 7 2.6. IPv6 ACL and Policy Routing Configuration . 8 2.7. Summary for IPv6 Trial on IP Backbone Network . 8 3. IPv6 Testing on BRAS . 9 3.1. Test Topology . 9 3.2. Test Cases- Basic IPv6 protocols . 12 3.3. Test Cases- DUT in Network Test . 12 3.4. Test Cases- Performance in IPv6 environment . 13 3.5. Summary for BRAS Testing . 13 4. IANA Considerations . 13 5. Security Considerations . 13 6. Normative References . 13 Authors’ Addresses . 14 Chen, et al. Expires January 5, 2012 [Page 3] Internet-Draft IPv6-bearer-network-trials July 2011 1. Introduction With fast development of global Internet, the demands for IP address are rapidly increasing at present. This year, IANA announced that the global free pool of IPv4 depleted on 3 February. IPv6 is only way to satisfy demands of Internet development. Operators have to accelerate the process of deploying IPv6 networks in order to address IP address strains. With significant demands of service development, China Mobile has officially kicked off first IPv6 pre-commercial trials on IP bearer network on June 2011 after several standalone tests of IP equipment in labs. The trials have taken place on major IP backbone network and broadband access equipments. In order to verify IPv6 feasibility and applicability,IPv6 protocol conformance and data packages forwarding capabiliteis have been tested in multi-vendors environments. Several IPv6 transition schemes, i.e. dual-stack, 6PE[RFC4789], 6vPE[RFC4659], have been deployed to validate interoperabilities. Based on the IPv6 trials, concrete testing data have been generated and analysed to provide informative assessment to facilitate IPv6 deployment in next steps. This memo has described detailed testing topology, cases and process both on IP backbone network and BRAS. The testing results have been summarized and analyzed to provide explicit conclusions for further deployment. 2. IPv6 trial on IP backbone network This section will describe IPv6 trial on IP backbone network in details. It includes testing topoloy, testing cases. Based on collected testing data, we have summarized testing results. 2.1. IP Backbone Topology for Trials Figure 1 depicts the overall topology for IP backbone trials, which is constituted by hierarchical IPv6 enable routers. The same level would deploy double-routers due to redundancy considerations. The top-level is national IP backbone network to connect provincial level networks. The middle level is provincial IP backbone to connect metropolitan area networks. The bottom level stands for core IP routers to connect local area networks. The trials have been taken place on these three levels. In order to simulate user-generated data, two router testers have been positioned to access metropolitan core routers. They have resposibilities to propagate routing information into the network under testing. Chen, et al. Expires January 5, 2012 [Page 4] Internet-Draft IPv6-bearer-network-trials July 2011 / / / / O------|--------------|---------O | +-------+ +-------+ | | |Router | |Router | | top-level | +-------+ +-------+ | O------|--------------|---------O ________/\___ ______/\__________ _________/ _________\__/________ \____ / / \ \ O-----|--------------|-------O O------|--------------|------O | +-------+ +-------+ | | +-------+ +-------+ | | |Router |----- |Router | | | |Router |------|Router | | | +-------+ +-------+ | | +-------+ +-------+ | O------|--------------|------O O------|--------------|------O \___ _____/ middle-level \___ _____/ \ / \ / \/ \/ +-------+ +-------+ |Router | bottom-level |Router | +-------+ +-------+ | | +-------+ +-------+ |Tester | |Tester | +-------+ +-------+ Figure 1: IP Backbone Topology for Trials The test cases mainly are composed by several parts: o IPv6-only routing protocol interoperabilities: the test case would shutdown IPv4 stack on tested routers. Only IPv6 stack is running to process IPv6 EGP(i.e. BGP4+[RFC2545]) and IGP routing protocol(i.e. OSPFv3[RFC2740] and ISIS[RFC5308]). It will validate IPv6 routing protocol conformance in multi-vendor environments. o Dual-stack routing protocol interoperabilities: the tested router would run both IPv4 and IPv6 IGP and EGP protocol simutanously. It will verify if remote peers could totally learn spreaded IPv4/ IPv6 routing information. o 6PE/6vPE protocol interoperabilities: the test case would require PE routers to be upgraded to support 6PE/6vPE functionalities and remain MPLS core network staying IPv4-enable. It will testify MP- BGP routing learning and package forwarding capabilities. Chen, et al. Expires January 5, 2012 [Page 5] Internet-Draft IPv6-bearer-network-trials July 2011 o Tunnel protocol interoperabilities: the test case would configure PE routers as 6over4 tunnel end-point. After configured 6over4 tunnel is established, the encapsulated package would be forwarded throught MPLS network. o IPv6 ACL and policy routing capabilities: the target of this test case aiming at IPv6 traffic restrainability. A pair PE would be configured with a paticular policy to constrain data forwarding for specific IPv6 traffic. The verification will help to enhance network security. The following sub-sections would state testing results and related observations. 2.2. IPv6-only Routing Protocol Testing The testing is going to validate IPv6 routing protocol interconnection between multi-vendor routers. OSPFv3 and ISIS have been deployed as Interior Gateway Protocol. Based on IGP, BGP4+ has been configured as EGP to commnunicate routing informaiton. In the case of OSPFv3 deployment, routers on the top-level and middle-level have been schemed as area 0, which takes responsibility of backbone area. And, routers on the bottom-level has been configured as area 100 and area 200 accessing to backbone area. The testers inject IPv6 routing information to see whether propagated IPv6 routing information can be learned by remote routers located on the other side of bottom-level. The teting is finalized that routers on bottom-level still remain Exstar/Exchange states. OSPFv3 can’t creates adjacencies between neighboring routers for the purpose of exchanging routing information. After troubleshooting, IPv6 MTU between neighboring routers is inconsistent, which causes it failed to establish adjacencies. It is fixed by adjusting IPv6 MTU as identical. It’s recommedded that IPv6
Recommended publications
  • Routing Loop Attacks Using Ipv6 Tunnels
    Routing Loop Attacks using IPv6 Tunnels Gabi Nakibly Michael Arov National EW Research & Simulation Center Rafael – Advanced Defense Systems Haifa, Israel {gabin,marov}@rafael.co.il Abstract—IPv6 is the future network layer protocol for A tunnel in which the end points’ routing tables need the Internet. Since it is not compatible with its prede- to be explicitly configured is called a configured tunnel. cessor, some interoperability mechanisms were designed. Tunnels of this type do not scale well, since every end An important category of these mechanisms is automatic tunnels, which enable IPv6 communication over an IPv4 point must be reconfigured as peers join or leave the tun- network without prior configuration. This category includes nel. To alleviate this scalability problem, another type of ISATAP, 6to4 and Teredo. We present a novel class of tunnels was introduced – automatic tunnels. In automatic attacks that exploit vulnerabilities in these tunnels. These tunnels the egress entity’s IPv4 address is computationally attacks take advantage of inconsistencies between a tunnel’s derived from the destination IPv6 address. This feature overlay IPv6 routing state and the native IPv6 routing state. The attacks form routing loops which can be abused as a eliminates the need to keep an explicit routing table at vehicle for traffic amplification to facilitate DoS attacks. the tunnel’s end points. In particular, the end points do We exhibit five attacks of this class. One of the presented not have to be updated as peers join and leave the tunnel. attacks can DoS a Teredo server using a single packet. The In fact, the end points of an automatic tunnel do not exploited vulnerabilities are embedded in the design of the know which other end points are currently part of the tunnels; hence any implementation of these tunnels may be vulnerable.
    [Show full text]
  • Vista Network Attack Surface Analysis and Teredo Security Implications Dr
    Vista Network Attack Surface Analysis and Teredo Security Implications Dr. James Hoagland, Principal Security Researcher Work with Ollie Whitehouse, Tim Newsham, Matt Conover, Oliver Friedrichs Symantec Security Response – Advanced Threat Research BlackHat Briefings, 2 August 2007 Main Take-Away from this Talk • The network stack in Windows Vista is quite different than the one in Windows XP – So you may need to adapt how you do things as a result • Teredo has a number of security concerns – Watch out for it tunneling on your networks Symantec Advanced Threat Research Vista Network Attack Surface Analysis and Teredo Security Impl. 2 Windows Vista Network Attack Surface Analysis • We examined the security-relevant aspects of Vista, from the point of view of the network – Part of Advanced Threat Research’s review of Vista – Our motive: lots of systems will be running Vista so it’s important to know what to expect – A very broad review, from layer 2 to 5 – We dug fairly deep into some areas • Results here are mostly from the out-of-the-box configuration with release (RTM) build of Vista • Full details of this analysis are available in: – Windows Vista Network Attack Surface Analysis – By Jim Hoagland, Matt Conover, Tim Newsham, Ollie Whitehouse – http://www.symantec.com/avcenter/reference/Vista_Network_Attack_Surface_RTM.pdf Symantec Advanced Threat Research Vista Network Attack Surface Analysis and Teredo Security Impl. 3 Teredo Security Implications • We also conducted analysis of the security implications of Teredo • Teredo is a genus of shipworms • Shipworms are not worms at all, they are considered mollusks • Significant concerns for wooden ships, pilings, etc – They bore holes in wood – So you need to watch out for it Symantec Advanced Threat Research Vista Network Attack Surface Analysis and Teredo Security Impl.
    [Show full text]
  • Ipv6 Transition Techniques
    IPv6 Transition Techniques Nalini Elkins CEO Inside Products, Inc. [email protected] 1 Why Transition Techniques? IPv4 Only IPv6 Only Timeline? IPv4 Only IPv6 Only 2012 2022 How to get from here to there? Translation IPv4 Only Tunneling IPv6 Only 2012 Dual Stack 2022 Why Now? IANA ran out of IPv4 addresses in 2011 RIR Projected Exhaustion Date Remaining Addresses in RIR Pool (/8s) ----------------------------------------------------------------------------------------- APNIC: 19-Apr-2011 0.9290 RIPENCC: 28-Jul-2012 1.8280 ARIN: 04-Feb-2013 3.5250 LACNIC: 17-Jan-2014 3.4247 AFRINIC: 28-Oct-2014 4.1924 So, now what? • In the next 5 years: – Some ISP will run out of IPv4 addresses – Some customers of that ISP will get IPv6 addresses. – How will they get to IPv4 only websites: for example: www.mybank.com? – Yes, ISPs are offering tunneling but… • What is the performance? • Security risks? • What will it cost? The Killer App! The Internet! Internet Penetration by Continent 2012 and 2014 Federal Mandates • Upgrade public/external facing servers and services (e.g. web, email, DNS, ISP services, etc) to operationally use native IPv6 by the end of FY 2012; • Upgrade internal client applications that communicate with public Internet servers and supporting enterprise networks to operationally use native IPv6 by the end of FY 2014; How to Start? • Organizations are like ships. • Larger the ship, larger the turning radius. • Many groups need to be involved (security, applications, network hardware, systems, operations, help desk, vendors.) • Lights out data centers / automated operations • Team approach is imperative. What is this team going to do? • A roadmap for implementation.
    [Show full text]
  • Guidelines for the Secure Deployment of Ipv6
    Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks NIST Special Publication 800-119 Guidelines for the Secure Deployment of IPv6 Recommendations of the National Institute of Standards and Technology Sheila Frankel Richard Graveman John Pearce Mark Rooks C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 December 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Dr. Patrick D. Gallagher, Director GUIDELINES FOR THE SECURE DEPLOYMENT OF IPV6 Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-119 Natl. Inst. Stand. Technol. Spec. Publ. 800-119, 188 pages (Dec. 2010) Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.
    [Show full text]
  • Individual Submission E. Jankiewicz (Ed.) Internet Draft SRI International, Inc
    Individual Submission E. Jankiewicz (Ed.) Internet Draft SRI International, Inc. Intended status: Informational October 25, 2010 Expires: April 2011 An Annotated Bibliography for IPv4-IPv6 Transition and Coexistence draft-jankiewicz-v6ops-v4v6biblio-03.txt Abstract The Internet is in the early stages of what may be a protracted period of coexistence of IPv4 and IPv6. Network operators are challenged with the task of activating IPv6 without negative impact on operating IPv4 networks and their customers. This draft is an informational “annotated bibliography” compiled to help in the analysis and development of basic guidelines and recommendations for network operators. The goal of this document is to survey the current state of RFCs, Internet-Drafts and external reference materials that define the use cases, problem statements, protocols, transition mechanisms and coexistence tools that will be of interest to a network operator planning to turn on IPv6. Status of this Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html This Internet-Draft will expire on April 25, 2009.
    [Show full text]
  • Watching the Ipv6 Takeoff from an IXP's Viewpoint
    Watching the IPv6 Takeoff from an IXP’s Viewpoint Juhoon Kim Nadi Sarrar Anja Feldmann TU-Berlin TU-Berlin TU-Berlin Berlin, Germany Berlin, Germany Berlin, Germany [email protected] [email protected] [email protected] Abstract—The different level of interest in deploying the new it was still too early to feel the scarcity of the address space Internet address space across network operators has kept IPv6 in their bones. Furthermore, it was commonly acknowledged tardy in its deployment. However, since the last block of IPv4 that inequalities of the benefit of and the demand for the new addresses has been assigned, Internet communities took the concern of the address space scarcity seriously and started to Internet protocol among network operators made it difficult to move forward actively. After the successful IPv6 test on 8 June, adopt IPv6 all together. 2011 (World IPv6 Day [1]), network operators and service/content However, the situation has changed since the last block of providers were brought together for preparing the next step of the the IPv4 addresses has been assigned to the RIRs in mid-2011. IPv6 global deployment (World IPv6 Launch on 6 June, 2012 [2]). Soon after the IPv4 address depletion of the Internet Assigned The main purpose of the event was to permanently enable their IPv6 connectivity. Numbers Authority (IANA), Asia Pacific Network Information In this paper, based on the Internet traffic collected from Centre (APNIC) reported that they reached the final stage of a large European Internet Exchange Point (IXP), we present the IPv4 exhaustion [4].
    [Show full text]
  • A Hybrid Technique for Tunneling Mechanism of Ipv6 Using Teredo and 6RD to Enhance the Network Performance
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 9, No. 11, 2018 A Hybrid Technique for Tunneling Mechanism of IPv6 using Teredo and 6RD to Enhance the Network Performance Zulfiqar Ali Zardari1 Reehan Ali Shah3 Faculty of Information Technology Computer System Engineering Beijing University of Technology University College of Engineering & Technology (UCET) Beijing, China The Islamia University Bahawalpur Munwar Ali2 Ladha Hussain Zardari4 Department of Software Engineering. MUET SZAB Department of Information Technology, QUEST, Khairpur Mirs‟, Pakistan Nawabshah, Pakistan Abstract—Currently, Internet Protocol version 4 6RD are widely used by research community. This research (IPv4) addresses have been depleted. Many Internet Service focuses on both Teredo and 6RD.Currently, illustrated issue is Providers (ISPs), researchers and end users are migrating from the connectivity of IPV4 and IPV6 under the same IPv4 to IPv6 due to strong features of IPv6 and limitation in environment. Devices are not upgraded to support IPv6 IPv4. Different tunneling techniques have been deployed to connectivity and Compatibility. There is a need of hybrid migrate on IPv6 for ordinary users. However, these techniques network so that IPv4/IPv6 can communicate across both the create many issues such as compatibility, complexity, network infrastructure. It is difficult for ISPs to control the connectivity and traffic. Due to the dissimilar header structure flow of packets in 6to4 tunnel prefix from customers for this and incompatibility of IPv4 and IPv6, the devices are unable to reason 6RD is proposed. The rapid use of social networks and communicate with each other because devices do not support multimedia application create high data transmission load and IPv6 addresses directly.
    [Show full text]
  • An Analytical Approach by Multifarious Sym Teredo
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 304914, 8 pages http://dx.doi.org/10.1155/2014/304914 Research Article Performance Analysis for Wireless Networks: An Analytical Approach by Multifarious Sym Teredo D. Shalini Punithavathani and Sheryl Radley Department of CSE, Government College of Engineering, Tirunelveli, Tamil Nadu 627 007, India Correspondence should be addressed to Sheryl Radley; [email protected] Received 15 September 2014; Accepted 1 November 2014; Published 24 November 2014 Academic Editor: Abu B. Sesay Copyright © 2014 D. S. Punithavathani and S. Radley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. IPv4-IPv6 transition rolls out numerous challenges to the world of Internet as the Internet is drifting from IPv4 to IPv6. IETF recommends few transition techniques which includes dual stack and translation and tunneling. By means of tunneling the IPv6 packets over IPv4 UDP, Teredo maintains IPv4/IPv6 dual stack node in isolated IPv4 networks behindhand network address translation (NAT). However, the proposed tunneling protocol works with the symmetric and asymmetric NATs. In order to make a Teredo support several symmetric NATs along with several asymmetric NATs, we propose multifarious Sym Teredo (MTS), which is an extension of Teredo with a capability of navigating through several symmetric NATs. The work preserves the Teredo architecture and also offers a backward compatibility with the original Teredo protocol. 1. Introduction Internet protocol—Internet control message protocol (SIIT), static tunneling, tunnel broker, ISATAP, 6to4 tunneling, 6in4 IPv4, the first version of the Internet protocol, offers a unique tunneling, 6over4 tunneling, Teredo, NAT64, and 6rd (IPv6 global computer addressing to make sure that two entities can rapiddevelopment)havebeendevelopedtosupportthe exceptionally identify one another.
    [Show full text]
  • Comprehensive Survey of Ipv6 Transition Technologies: a Subjective Classification for Security Analysis
    IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x 1 SURVEY PAPER Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis Gábor LENCSE†a) and Youki KADOBAYASHI††b), Members SUMMARY Due to the depletion of the public IPv4 address pool, the conducting a comprehensive survey of the IPv6 transition transition to IPv6 became inevitable. However, this ongoing transition is technologies (including any protocols that can be used to en- taking a long time, and the two incompatible versions of the Internet Pro- able communication in any scenario despite the incompati- tocol must coexist. Different IPv6 transition technologies were developed, which can be used to enable communication in various scenarios, but they bility of IPv4 and IPv6) and identifying those of them, which also involve additional security issues. In this paper, first, we introduce would be worth submitting to a detailed security analysis. To our methodology for analyzing the security of IPv6 transition technologies achieve this goal, first, we give a short introduction to our in a nutshell. Then, we develop a priority classification method for the methodology for the security analysis of IPv6 transition tech- ranking of different IPv6 transition technologies and their most important implementations, so that the vulnerabilities of the most crucial ones may be nologies [6], then we develop a priority classification method examined first. Next, we conduct a comprehensive survey of the existing for both the technologies and their most important implemen- IPv6 transition technologies by describing their application scenarios and tations, and after that, we present an exhaustive overview of the basics of their operation and we also determine the priorities of their the existing IPv6 transition technologies together with their security analysis according to our ranking system.
    [Show full text]
  • Evaluating Ipv6 Adoption in the Internet
    Evaluating IPv6 Adoption in the Internet Lorenzo Colitti, Steinar H. Gunderson, Erik Kline, Tiziana Refice Google, Inc. {lorenzo,sesse,ek,tiziana}@google.com Abstract. As IPv4 address space approaches exhaustion, large net- works are deploying IPv6 or preparing for deployment. However, there is little data available about the quantity and quality of IPv6 connectivity. We describe a methodology to measure IPv6 adoption from the perspec- tive of a Web site operator and to evaluate the impact that adding IPv6 to a Web site will have on its users. We apply our methodology to the Google Web site and present results collected over the last year. Our data show that IPv6 adoption, while growing significantly, is still low, varies considerably by country, and is heavily influenced by a small number of large deployments. We find that native IPv6 latency is comparable to IPv4 and provide statistics on IPv6 transition mechanisms used. 1 Introduction The network protocol that has been used in the Internet since its inception is IPv4 [1], which provides 232 distinct addresses. Its successor IPv6 [2] provides 2128 addresses, but IPv6 adoption has not proceeded as quickly as its designers expected [3]. Since IPv6 is not backward-compatible with IPv4 both clients and servers have to deploy IPv6 to make use of it; since IPv6 provides little immediate benefit apart from larger address space the operational community has seen little motivation to deploy it. However, as IPv4 address exhaustion approaches [4], a number of networks have deployed IPv6 or are preparing for deployment. One of the problems faced by an organization, especially a Web site opera- tor, wanting to deploy IPv6 is the lack of information on IPv6 adoption and the quality of service provided by the IPv6 Internet.
    [Show full text]
  • Impact of Ipv4-Ipv6 Coexistence in Cloud Virtualization Environment
    Impact of IPv4-IPv6 Coexistence in Cloud Virtualization Environment Mohammad Aazam1, Eui-Nam Huh2 Innovative Cloud and Security Lab, Department of Computer Engineering Kyung Hee University, Suwon, South Korea. [email protected] [email protected] Abstract— Since January 2011, IPv4 address space has exhausted routed from that IPv4 network. Network layer virtualization and IPv6 is taking up the place as successor. Coexistence of IPv4 provides a very useful mean to achieve the coexistence of both and IPv6 bears problem of incompatibility, as IPv6 and IPv4 these versions of IP, described more in section II. As IPv4 and headers are different from each other, thus, cannot interoperate IPv6 headers are different from each other in terms of the with each other directly. The IPv6 transitioning techniques are header format (fields, the address format and address size are still not mature, causing hindrance in the deployment of IPv6 and development of next generation Internet. Until IPv6 completely different), so some mechanism is always required that makes it takes over from IPv4, they will both coexist. For IPv4-IPv6 possible to route the packet between different islands, i.e. the coexistence, three solutions are possible: a) making every device IPv4 island and the IPv6 island. For this purpose, three dual stack, b) translation, c) tunneling. Tunneling stands out as mechanisms: dual stack, translation, and tunneling, are the best possible solution. Among the IPv6 tunneling techniques, available in the literature [11]. this paper evaluates the impact of three recent IPv6 tunneling techniques: 6to4, Teredo, and ISATAP, in cloud virtualization Dual stack means nodes (routers and other IP devices) can environment.
    [Show full text]
  • Tunneling Ipv6 Through NAT with Teredo Mechanism
    Tunneling IPv6 through NAT with Teredo Mechanism Shiang-Ming Huang, Quincy Wu, Yi-Bing Lin Department of Computer Science and Information Engineering National Chiao Tung University {smhuang,solomon,liny}@csie.nctu.edu.tw many Internet service providers, especially WLAN Abstract (wireless local area network) and GPRS (general packet Teredo is a service that enables hosts located behind radio service), usually provide private IPv4 addresses to one or more IPv4 NATs to obtain IPv6 connectivity by their customers, and NAT (network address translation) tunneling packets over IPv4 UDP. Under the national [4] is utilized to establish Internet connectivity. Hence, IPv6 deployment project in Taiwan, we developed the IPv6 users behind the NAT would be unable to establish first Linux-based Teredo service in 2003. In this paper, tunnels to other IPv6 networks. This turns out to be one we explain how IPv6 candidates located behind NATs of the major obstacles in IPv6 deployment. can enlist the help of “Teredo servers” and “Teredo Several solutions for tunneling IPv6 packets through relays” to learn their “global addresses” and to obtain NAT have been proposed, including VPN (virtual private connectivity, and how clients, servers and relays can be network) and UDP tunnel [5]. These solutions provide organized in Teredo networks. We also describe in details IPv6 connectivity for private hosts. However, they have our strategies for implementing Teredo server and Teredo the scalability problem because manual configuration is relay under Linux, and show the performance of different required for the user end of a tunnel. This configuration Teredo implementations in public domain. is not an easy task for common users, and is not suitable for ISP to perform large deployment.
    [Show full text]