Qoriq Debugger and NEXUS Trace
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Variable-Length Encoding (VLE) Extension Programming Interface Manual
UM0438 User manual Variable-Length Encoding (VLE) extension programming interface manual Introduction This user manual defines a programming model for use with the variable-length encoding (VLE) instruction set extension. Three types of programming interfaces are described herein: ■ An application binary interface (ABI) defining low-level coding conventions ■ An assembly language interface ■ A simplified mnemonic assembly language interface July 2007 Rev 1 1/50 www.st.com Contents UM0438 Contents Preface . 7 About this book . 7 Audience. 7 Organization . 7 Suggested reading . 7 Related documentation. 8 General information . 8 Conventions . 8 Terminology conventions . 9 Acronyms and abbreviations. 9 1 Overview . 11 1.1 Application Binary Interface (ABI) . 11 1.2 Assembly language interface . 11 1.3 Simplified mnemonics assembly language interface . 11 2 Application Binary Interface (ABI) . 12 2.1 Instruction and data representation . 12 2.2 Executable and Linking Format (ELF) object files . 12 2.2.1 VLE information section . 13 2.2.2 VLE identification . 14 2.2.3 Relocation types . 15 3 Instruction set . 20 Appendix A Simplified mnemonics for VLE instructions . 22 A.1 Overview . 22 A.2 Subtract simplified mnemonics . 22 A.2.1 Subtract immediate. 22 A.2.2 Subtract . 23 A.3 Rotate and shift simplified mnemonics . 23 A.3.1 Operations on words. 24 A.4 Branch instruction simplified mnemonics . 24 2/50 UM0438 Contents A.4.1 Key facts about simplified branch mnemonics . 26 A.4.2 Eliminating the BO32 and BO16 operands. 26 A.4.3 The BI32 and BI16 operand—CR Bit and field representations . 27 A.4.4 BI32 and BI16 operand instruction encoding . -
Dot / Faa /Ar-11/5
DOT/FAA/AR-11/5 Microprocessor Evaluations for Air Traffic Organization NextGen & Operations Planning Safety-Critical, Real-Time Office of Research and Technology Development Applications: Authority for Washington, DC 20591 Expenditure No. 43 Phase 5 Report May 2011 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actlibrary.tc.faa.gov. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-11/5 4. Title and Subtitle 5. Report Date MICROPROCESSOR EVALUATIONS FOR SAFETY-CRITICAL, REAL-TIME May 2011 APPLICATIONS: AUTHORITY FOR EXPENDITURE NO. -
Qoriq: High End Industrial and Networking Processing
TM TechDays 2013 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, Ready Play, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, trademarks of Freescale Semiconductor, Inc. All other product or service names are the BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, TM property of their respective owners. © 2012 Freescale Semiconductor, Inc. 1 Ready Play, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All . other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. 2013 2011 QorIQ Qonverge QorIQ next-generation platform launch platform based T series 28nm on Layerscape architecture 2008 QorIQ Multicore Platform launch (P series) Accelerating the P series 45nm Network’s IQ 2004 Dual-core -
SEWIP Program Leverages COTS P 36 P 28 an Interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions
@military_cots John McHale Obsolescence trends 8 Special Report Shipboard displays 44 Mil Tech Trends Predictive analytics 52 Industry Spotlight Aging avionics software 56 MIL-EMBEDDED.COM September 2015 | Volume 11 | Number 6 RESOURCE GUIDE 2015 P 62 Navy SEWIP program leverages COTS P 36 P 28 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Systems & Global Solutions Military electronics market overview P 14 Volume 11 Number 6 www.mil-embedded.com September 2015 COLUMNS BONUS – MARKET OVERVIEW Editor’s Perspective 14 C4ISR funding a bright spot in military 8 Tech mergers & military electronics electronics market obsolescence By John McHale, Editorial Director By John McHale Q&A EXECUTIVE OUTLOOK Field Intelligence 10 Metadata: When target video 28 Defending DoD from cyberattacks, getting to data is not enough the left of the boom By Charlotte Adams 14 An interview with Deon Viergutz, Vice President of Cyber Solutions at Lockheed Martin Information Mil Tech Insider Systems & Global Solutions 12 Broadwell chip boosts GPU performance for COTS SBCs 32 RF and microwave innovation drives military By Aaron Frank radar and electronic warfare applications An interview with Bryan Goldstein, DEPARTMENTS General Manager of the Aerospace and Defense, Analog Devices 22 Defense Tech Wire By Mariana Iriarte SPECIAL REPORT 60 Editor’s Choice Products Shipboard Electronics 112 University Update 36 U.S. Navy’s electronic warfare modernization On DARPA’s cybersecurity radar: 36 effort centers on COTS Algorithmic and side-channel attacks By Sally Cole, Senior Editor By Sally Cole 114 Connecting with Mil Embedded 44 Key to military display technologies: Blog – The fascinating world of System integration By Tom Whinfrey, IEE Inc. -
Embedded Computing Product Guide Our Customers Operate in Many Diverse Markets
Embedded Computing for Business-Critical Continuity™ Embedded Computing Product Guide Our customers operate in many diverse markets. What unites them is a need to work with a company that has an outstanding record as a reliable supplier. That’s Emerson Network Power. That’s the critical difference. The Embedded Computing business of Emerson Network Power enables original equipment manufacturers and systems integrators to develop better products quickly, cost effectively and with less risk. Emerson is a recognized leading provider of embedded computing solutions ranging from application-ready platforms, embedded PCs, enclosures, motherboards, blades and modules to enabling software and professional services. For nearly 30 years, we have led the ecosystem required to enable new technologies to succeed including defining open specifications and driving industry-wide interoperability. This makes your integration process straightforward and allows you to quickly and easily build systems that meet your application needs. Emerson’s engineering and technical support is backed by world-class manufacturing that can significantly reduce Table of Contents your time-to-market and help you gain a clear competitive edge. And, as part of Emerson, the Embedded Computing 4 AdvancedTCA Products business has strong financial credentials. 9 Commercial ATCA Products Let Emerson help you improve time-to-market and shift 10 Motherboard & COM Products your development efforts to the deployment of new, 14 RapiDex™ Board Customization value-add features and services that create competitive 15 OpenVPX Products advantage and build market share. With Emerson behind you, anything is possible. 16 VME Products 18 CompactPCI Products 20 Solution Services 21 Innovation Partnership Program 22 Terms & Conditions 2 Our leadership and heritage includes embedded computing solutions for military, aerospace, government, medical, automation, industrial and telecommunications applications. -
Dual-Core ARM Cortex-A7 • 2 X ARM Cortex A7 Cpus, up to 1.0Ghz
Технологии QNX и КПДА в России Москва, 13 апреля 2017 Микропроцессоры NXP c с поддержкой технологий QNX для промышленных, сетевых, автомобильных приложений. Семейства QorIQ, i.MX и S32V. Александр Акименко, Группа компаний Симметрон Программа презентации • i.MX 6QuadPlus/6DualPlus – флагман линейки i.MX • i.MX 7 – энергоэффективное решение для IoT • Анонс процессоров i.MX 8 – взгляд в будущее линейки i.MX • LS1012A – самый маленький и самый энергоэффективный 64- битный процессор • LS1020A/21A/22A – двухъядерные процессоры с широким набором периферии для IoT и промышленных приложений • LS1023A/43A – 64-разрядные процессоры с поддержкой 10Gbps Ethernet • S32V – процессоры для реализации функций ADAS в автомобильной электронике 1 i.MX 6QuadPlus/6DualPlus (upgraded i.MX 6Quad/6Dual) QNX SDP 7.0 Specifications: BSP available • CPU: i.MX 6QuadPlus: 4x Cortex-A9 @ 800MHz/852MHz/1GHz/1.2GHz i.MX 6DualPlus: 2x Cortex-A9 @ 800MHz/852MHz/1GHz/1.2GHz • Process: 40nm • Package: 21x21 0.8mm Flip-chip BGA • Temp Range (Tj): • Auto -40 to 125C • Industrial -40 to 105C • Extended Commercial -20 to 105C • Qual Tiers: Commercial, Automotive, Industrial • Pin compatible with i.MX 6Quad and i.MX 6Dual • Up to 10,000 DMIPS 2 i.MX Processor Roadmap 6QuadPlus i.MX 8 family 6Quad Advanced Graphics and Performance ARM ® v8-A (32-bit/ 64-bit) 6DualPlus i.MX 8M family pin Compatible pin 6Dual - Advanced Audio and Video to - ARM ® v8-A 6DualLite (32-bit/ 64-bit) Pin 6Solo i.MX 8X family Safety Critical & Efficient Performance 6SoloX ® ARM v8-A (32-bit/ 64-bit) Software Compatible Software 6SoloLite 6UltraLite i.MX 7 Power Efficiency & BOM Cost Optimizations ® 6ULL ARM v7-A (32-bit) ® ARM v7-A 3 i.MX 7Dual/7Solo QNX SDP 7.0 BSP Specifications: available . -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements. -
Freescale Qoriq P4080 DMA-DDR Performance Analysis
TM Wai Chee Wong Sr.Member of Technical Staff Freescale Semiconductor Raghu Binnamangalam Sr.Technical Marketing Engineer Cadence Design Systems Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, t he Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc. DAC 2013, Austin, TX • Company Overview • Use of emulation at Freescale • Palladium usage for emulation model under test • Performance case studies • Experiences using Palladium system • Summary Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a TM 2 Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2011 Freescale Semiconductor, Inc. • Global leader in embedded -
Vybrid Controllers Technical Overview
TM June 2013 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C- Ware, the Energy Efficient Solutions logo, Kinetis, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, Qorivva, SafeAssure, the SafeAssure logo, StarCore, Symphony and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, CoreNet, Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SMARTMOS, Tower, TurboLink, Vybrid and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc. • Overview of Vybrid Family • Vybrid Tower Board • Vybrid System Modules • QuadSPI Flash • Vybrid Clock System • Vybrid Power System • Vybrid Boot Operation • High Assurance Boot • Vybrid Trusted Execution • LinuxLink and MQX Embedded Software • DS-5 compiler TM Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, Qorivva, SafeAssure, the SafeAssure logo, StarCore, Symphony and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. 2 Airfast, BeeKit, BeeStack, CoreNet, Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SMARTMOS, Tower, TurboLink, Vybrid and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc. TM Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C- Ware, the Energy Efficient Solutions logo, Kinetis, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, Qorivva, SafeAssure, the SafeAssure logo, StarCore, Symphony and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. -
Power Architecture® Roadmap
TM Nikolay Guenov Rich Schnur Matt Short NPD June 2012 Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, Ready Play, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. Overview • QorIQ Portfolio Overview • Market Overview • Roadmap • What’s new? (P5040, T2080, T1040) • Announcing our next generation networking architecture • Enablement Product Deep Dive • P5040/P5021 • T4240 • T2080 • T1042 The Next Generation – Initial Products Summary Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorIQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, Kinetis, MagniV, MXC, Platform in a Package, Processor Expert, QorIQ Qonverge, Qorivva, QUICC Engine, TM 2 Ready Play, SafeAssure, the SafeAssure logo, SMARTMOS, TurboLink, VortiQa and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service -
The DENX U-Boot and Linux Guide (DULG) for Canyonlands
The DENX U-Boot and Linux Guide (DULG) for canyonlands Table of contents: • 1. Abstract • 2. Introduction ♦ 2.1. Copyright ♦ 2.2. Disclaimer ♦ 2.3. Availability ♦ 2.4. Credits ♦ 2.5. Translations ♦ 2.6. Feedback ♦ 2.7. Conventions • 3. Embedded Linux Development Kit ♦ 3.1. ELDK Availability ♦ 3.2. ELDK Getting Help ♦ 3.3. Supported Host Systems ♦ 3.4. Supported Target Architectures ♦ 3.5. Installation ◊ 3.5.1. Product Packaging ◊ 3.5.2. Downloading the ELDK ◊ 3.5.3. Initial Installation ◊ 3.5.4. Installation and Removal of Individual Packages ◊ 3.5.5. Removal of the Entire Installation ♦ 3.6. Working with ELDK ◊ 3.6.1. Switching Between Multiple Installations ♦ 3.7. Mounting Target Components via NFS ♦ 3.8. Rebuilding ELDK Components ◊ 3.8.1. ELDK Source Distribution ◊ 3.8.2. Rebuilding Target Packages ◊ 3.8.3. Rebuilding ELDT Packages ♦ 3.9. ELDK Packages ◊ 3.9.1. List of ELDT Packages ◊ 3.9.2. List of Target Packages ♦ 3.10. Rebuilding the ELDK from Scratch ◊ 3.10.1. ELDK Build Process Overview ◊ 3.10.2. Setting Up ELDK Build Environment ◊ 3.10.3. build.sh Usage ◊ 3.10.4. Format of the cpkgs.lst and tpkgs.lst Files ♦ 3.11. Notes for Solaris 2.x Host Environment • 4. System Setup ♦ 4.1. Serial Console Access ♦ 4.2. Configuring the "cu" command ♦ 4.3. Configuring the "kermit" command ♦ 4.4. Using the "minicom" program ♦ 4.5. Permission Denied Problems ♦ 4.6. Configuration of a TFTP Server ♦ 4.7. Configuration of a BOOTP / DHCP Server ♦ 4.8. Configuring a NFS Server • 5. -
AFE#43 Phase 2 Report
DOT/FAA/AR-08/14 Microprocessor Evaluations for Air Traffic Organization Safety-Critical, Real-Time Operations Planning Office of Aviation Research and Development Applications: Authority for Washington, DC 20591 Expenditure No. 43 Phase 2 Report June 2008 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-08/14 4. Title and Subtitle 5. Report Date MICROPROCESSOR EVALUATIONS FOR SAFETY-CRITICAL, REAL-TIME June 2008 APPLICATIONS: AUTHORITY FOR EXPENDITURE NO. 43 PHASE 2 REPORT 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Rabi N. Mahapatra, Praveen Bhojwani, and Jason Lee TAMU-CS-AVSI-72005 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Aerospace Vehicle Systems Institute Texas Engineering Experiment Station Texas A&M University Department of Computer Science 11.