Guidelines on Urinary and Male Genital Tract Infections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L. -
Anthem Blue Cross Drug Formulary
Erythromycin/Sulfisoxazole (generic) INTRODUCTION Penicillins ...................................................................... Anthem Blue Cross uses a formulary Amoxicillin (generic) (preferred list of drugs) to help your doctor Amoxicillin/Clavulanate (generic/Augmentin make prescribing decisions. This list of drugs chew/XR) is updated quarterly, by a committee Ampicillin (generic) consisting of doctors and pharmacists, so that Dicloxacillin (generic) the list includes drugs that are safe and Penicillin (generic) effective in the treatment of diseases. If you Quinolones ..................................................................... have any questions about the accessibility of Ciprofloxacin/XR (generic) your medication, please call the phone number Levofloxacin (Levaquin) listed on the back of your Anthem Blue Cross Sulfonamides ................................................................ member identification card. Erythromycin/Sulfisoxazole (generic) In most cases, if your physician has Sulfamethoxazole/Trimethoprim (generic) determined that it is medically necessary for Sulfisoxazole (generic) you to receive a brand name drug or a drug Tetracyclines .................................................................. that is not on our list, your physician may Doxycycline hyclate (generic) indicate “Dispense as Written” or “Do Not Minocycline (generic) Substitute” on your prescription to ensure Tetracycline (generic) access to the medication through our network ANTIFUNGAL AGENTS (ORAL) _________________ of community -
(CUA) and Cefprozil (CZ) in Pharmaceutical Drugs by RP-HPLC
American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copyright@ MA Alfeen New Development Method for Determination of Cefuroxime Axetil (CUA) and Cefprozil (CZ) in Pharmaceutical Drugs by RP-HPLC MA Alfeen1* and Y Yildiz2 1Department of Chemistry, Al-Baath University, Syria 2Science Department, Centenary University, USA *Corresponding author: MA Alfeen, Department of Chemistry, Faculty of Second Science, Al-Baath University, Homs, Syria. To Cite This Article: MA Alfeen.New Development Method for Determination of Cefuroxime Axetil (CUA) and Cefprozil (CZ) in Pharmaceutical Drugs by RP-HPLC. Am J Biomed Sci & Res. 2019 - 4(1). AJBSR.MS.ID.000759. DOI: 10.34297/AJBSR.2019.04.000759 Received: June 29, 2019 | Published: July 17, 2019 Abstract High performance liquid chromatography was one of the most important technologies used in drug control and pharmaceutical quality control. In this study, an analytical method was developed using chromatography method for determination of two Cephalosporin as like: Cefuroxime Axetil (CUA), and Cefprozil (CZ) in pharmaceutical Drug Formulations. Isocratic separation was performed on an Enable C18 column (125mm × 4.6mm i.d, 5.0μm, 10A˚) Using Triethylamine: Methanol: Acetonitrile: Ultra-Pure Water (0.1: 5: 25: 69.9 v/v/v/v %) as a mobile phase at flow rate of 1.5 mL\min. The PDA detection wavelength was set at 262nm. The linearity was observed over a concentration range of (0.01–50μg\mL) for RP-HPLC method (correlation coefficient=0.999). The developed method was validated according to ICH guidelines. The relative standard deviation values for the method precision studies were < 1%, and an accuracy was > 98%. -
Repurposing Drug Scaffolds: a Tool for Developing Novel Therapeutics with Applications in Malaria and Lung Cancer
Repurposing Drug Scaffolds: A Tool for Developing Novel Therapeutics with Applications in Malaria and Lung Cancer A Thesis Submitted by: Hannah Elizabeth Cook In partial fulfilment of the requirements for the degree of: Doctor of Philosophy September 2018 Supervisors: Professor Matthew J. Fuchter & Professor Anthony G. M. Barrett Department of Chemistry Imperial College London 2 Declaration of Originality I, Hannah Cook, hereby confirm that the work presented within this thesis is entirely my own, conducted under the supervision of Professor Matthew J. Fuchter and Professor Anthony G. M. Barrett, at the Department of Chemistry, Imperial College London, unless otherwise stated. All work performed by others has been acknowledged within the text and referenced where appropriate. Hannah E. Cook September 2018 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Abstract The definition of repurposing in the context of drug discovery encompasses a variety of strategies designed to redirect current therapeutic knowledge towards new disease indications. This approach can be successful for the design of new drugs to treat diseases of the developing world such as Malaria, where there are limited resources to fund new drug discovery campaigns. Moreover, it can be used to decrease the drug development time for diseases in which there is high drug attrition rates coupled with high mortality rates, which is the case for some cancers. -
A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional. -
Efficacy of Fosfomycin Trometamol and Cefuroxime Axetil in the Treatment of Kashmir, India Urinary Tract Infections During Pregnancy
International Journal of Surgery Science 2019; 3(2): 33-35 E-ISSN: 2616-3470 P-ISSN: 2616-3462 © Surgery Science Efficacy of fosfomycin trometamol and cefuroxime axetil www.surgeryscience.com 2019; 3(2): 33-35 in the treatment of UTI during pregnancy: A Received: 18-11-2018 Accepted: 22-12-2018 comparative study Dr. Robindera Kour In Charge Consultant Surgery, Dr. Robindera Kour, Dr. Gurpreet Kour, Dr. Iqbal Singh, Dr. KK Gupta Govt. Hospital Sarwal, Jammu, and Dr. Rajiv Sharma Jammu and Kashmir, India Dr. Gurpreet Kour DOI: https://doi.org/10.33545/surgery.2019.v3.i2a.373 Medical Officer, Acharya Shri Chander College of Medical Abstract Sciences, Jammu, Jammu and Objective: To compare the efficacy of fosfomycin trometamol and cefuroxime axetil in the treatment of Kashmir, India urinary tract infections during pregnancy. Methods: Prospective clinical study was conducted among pregnant women who were followed as part of Dr. Iqbal Singh routine prenatal care at Government Hospital Sarwal, Jammu, India with complaints of lower UTI were Assistant Professor, Public Health assessed. 60 patients were enrolled, divided into 2 equal groups for treatment with single-dose fosfomycin Dentistry, Indira Gandhi Government Dental College, trometamol and 5-day courses of cefuroxime axetil. Follow-up was carried out after 5 weeks. Jammu, Jammu and Kashmir, Results: The treatment groups did not differ significantly in terms of demographics, clinical compliance India rate and adverse effects. But the patients who were taking 5-day courses of cefuroxime axetil showed statistically significant higher cure rate as well as lower recurrence rate as compared to fosfomycin Dr. -
The Activity of Mecillinam Vs Enterobacteriaceae Resistant to 3Rd Generation Cephalosporins in Bristol, UK
The activity of mecillinam vs Enterobacteriaceae resistant to 3rd generation cephalosporins in Bristol, UK Welsh Antimicrobial Study Group Grŵp Astudio Wrthfiotegau Cymru G Weston1, KE Bowker1, A Noel1, AP MacGowan1, M Wootton2, TR Walsh2, RA Howe2 (1) BCARE, North Bristol NHS Trust, Bristol BS10 5NB (2) Welsh Antimicrobial Study Group, NPHS Wales, University Hospital of Wales, CF14 4XW Introduction Results Results Results Figure 1: Population Distributions of Mecillinam MICs for E. Figure 2: Population Distributions of MICs for ESBL- Resistance in coliforms to 3rd generation 127 isolates were identified by screening of which 123 were confirmed as resistant to CTX or coli (n=72), NON-E. coli Enterobacteriaceae (n=47) and multi- producing E. coli (n=67) against mecillinam or mecillinam + cephalosporins (3GC) is an increasing problem resistant strains (n=39) clavulanate CAZ by BSAC criteria. The majority of 3GC- both in hospitals and the community. Oral options MR Non-E. coli E. coli Mecalone Mec+Clav resistant strains were E. coli 60.2%, followed by for the treatment of these organisms is often 35 50 Enterobacter spp. 16.2%, Klebsiella spp. 12.2%, limited due to resistance to multiple antimicrobial 45 and others (Citrobacter spp., Morganella spp., 30 classes. Mecillinam, an amidinopenicillin that is 40 Pantoea spp., Serratia spp.) 11.4%. 25 available in Europe as the oral pro-drug 35 All isolates were susceptible to meropenem with s 20 30 e s pivmecillinam, is stable to many beta-lactamases. t e a t l a mecillinam the next most active agent with more l o 25 o s We aimed to establish the activity of mecillinam i s i 15 % than 95% of isolates susceptible (table). -
In Vitro Susceptibility of Multi-Drug Resistant Klebsiella Pneumoniae Strains Causing Nosocomial Infections to Fosfomycin. a Comparison of Determination Methods
pathogens Article In Vitro Susceptibility of Multi-Drug Resistant Klebsiella pneumoniae Strains Causing Nosocomial Infections to Fosfomycin. A Comparison of Determination Methods Beata M ˛aczy´nska 1,* , Justyna Paleczny 1 , Monika Oleksy-Wawrzyniak 1 , Irena Choroszy-Król 2 and Marzenna Bartoszewicz 1 1 Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University, 50-367 Wroclaw, Poland; [email protected] (J.P.); [email protected] (M.O.-W.); [email protected] (M.B.) 2 Department of Basic Sciences, Faculty of Health Sciences, Medical University, 50-367 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Introduction: Over the past few decades, Klebsiella pneumoniae strains increased their pathogenicity and antibiotic resistance, thereby becoming a major therapeutic challenge. One of the few available therapeutic options seems to be intravenous fosfomycin. Unfortunately, the determination of sensitivity to fosfomycin performed in hospital laboratories can pose a significant problem. Therefore, the aim of the present research was to evaluate the activity of fosfomycin against clinical, multidrug-resistant Klebsiella pneumoniae strains isolated from nosocomial infections between Citation: M ˛aczy´nska,B.; Paleczny, J.; 2011 and 2020, as well as to evaluate the methods routinely used in hospital laboratories to assess Oleksy-Wawrzyniak, M.; bacterial susceptibility to this antibiotic. Materials and Methods: 43 multidrug-resistant Klebsiella Choroszy-Król, I.; Bartoszewicz, M. strains isolates from various infections were tested. All the strains had ESBL enzymes, and 20 In Vitro Susceptibility of Multi-Drug also showed the presence of carbapenemases. Susceptibility was determined using the diffusion Resistant Klebsiella pneumoniae Strains method (E-test) and the automated system (Phoenix), which were compared with the reference Causing Nosocomial Infections to method (agar dilution). -
Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma by Andrea Shergalis
Preclinical Evaluation of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma By Andrea Shergalis A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Medicinal Chemistry) in the University of Michigan 2020 Doctoral Committee: Professor Nouri Neamati, Chair Professor George A. Garcia Professor Peter J. H. Scott Professor Shaomeng Wang Andrea G. Shergalis [email protected] ORCID 0000-0002-1155-1583 © Andrea Shergalis 2020 All Rights Reserved ACKNOWLEDGEMENTS So many people have been involved in bringing this project to life and making this dissertation possible. First, I want to thank my advisor, Prof. Nouri Neamati, for his guidance, encouragement, and patience. Prof. Neamati instilled an enthusiasm in me for science and drug discovery, while allowing me the space to independently explore complex biochemical problems, and I am grateful for his kind and patient mentorship. I also thank my committee members, Profs. George Garcia, Peter Scott, and Shaomeng Wang, for their patience, guidance, and support throughout my graduate career. I am thankful to them for taking time to meet with me and have thoughtful conversations about medicinal chemistry and science in general. From the Neamati lab, I would like to thank so many. First and foremost, I have to thank Shuzo Tamara for being an incredible, kind, and patient teacher and mentor. Shuzo is one of the hardest workers I know. In addition to a strong work ethic, he taught me pretty much everything I know and laid the foundation for the article published as Chapter 3 of this dissertation. The work published in this dissertation really began with the initial identification of PDI as a target by Shili Xu, and I am grateful for his advice and guidance (from afar!). -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
Orally Active Esters of Cephalosporin Antibiotics. Ii
VOL. XXXII NO. 11 THE JOURNAL OF ANTIBIOTICS 1155 ORALLY ACTIVE ESTERS OF CEPHALOSPORIN ANTIBIOTICS. II SYNTHESIS AND BIOLOGICAL PROPERTIES OF THE ACETOXYMETHYL ESTER OF CEFAMANDOLE WALTER E. WRIGHT, WILLIAM J. WHEELER, VERLE D. LINE, JUDITH ANN FROGGE' and DON R. FINLEY Lilly Research Laboratories, Eli Lilly and Company Indianapolis, Indiana 46206, U.S.A. (Received for publication August 29, 1979) The synthesis of the acetoxymethyl (AOM) ester of cefamandole (CM) is described. The sparingly soluble ester is shown to be well absorbed orally by mice, but only when administered in solution in a partially non-aqueous vehicle, 50°o propylene glycol. Neither the ester in aqueous suspension nor the sodium salt of CM in solution is well absorbed orally. The rate of oral absorption of the ester from solution is very rapid as shown by the early peak time and shape of the plasma level curve. Oral bioavailability from solution is at least 60% and is ap- parently limited only by hydrolysis or precipitation of a variable portion of the ester dose in the intestinal lumen prior to absorption. Esterification of the carboxyl group of penicillins and cephalosporins can result in significant improvement in the oral absorption of the parent drug. Pivampicillin1), bacampicillin2) and talampicil- lin3J are examples of such successful penicillin derivatives, and the acetoxymethyl ester of cephaloglycin4 and other cephalosporin derivatives') illustrate the applicability of this pro-drug principle to cephalo- sporins. Although the intact esters are biologically inactive, they can be hydrolyzed to the active parent drug either during passage through the intestinal wall or after absorption has occurred6). -
Fosfomycin Resistance in Escherichia Coli Isolates from South Korea and in Vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics
antibiotics Article Fosfomycin Resistance in Escherichia coli Isolates from South Korea and in vitro Activity of Fosfomycin Alone and in Combination with Other Antibiotics Hyeri Seok 1 , Ji Young Choi 2, Yu Mi Wi 3, Dae Won Park 1, Kyong Ran Peck 4 and Kwan Soo Ko 2,* 1 Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea; [email protected] (H.S.); [email protected] (D.W.P.) 2 Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; [email protected] 3 Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea; [email protected] 4 Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-299-6223 Received: 17 February 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: We investigated fosfomycin susceptibility in Escherichia coli clinical isolates from South Korea, including community-onset, hospital-onset, and long-term care facility (LTCF)-onset isolates. The resistance mechanisms and genotypes of fosfomycin-resistant isolates were also identified. Finally, the in vitro efficacy of combinations of fosfomycin with other antibiotics were examined in susceptible or extended spectrum β-lactamase (ESBL)-producing E. coli isolates. The fosfomycin resistance rate was 6.7% and was significantly higher in LTCF-onset isolates than community-onset and hospital-onset isolates. Twenty-one sequence types (STs) were identified among 19 fosfomycin-resistant E. coli isolates, showing diverse genotypes. fosA3 was found in only two isolates, and diverse genetic variations were identified in three genes associated with fosfomycin resistance, namely, GlpT, UhpT, and MurA.