The Activity of Mecillinam Vs Enterobacteriaceae Resistant to 3Rd Generation Cephalosporins in Bristol, UK

Total Page:16

File Type:pdf, Size:1020Kb

The Activity of Mecillinam Vs Enterobacteriaceae Resistant to 3Rd Generation Cephalosporins in Bristol, UK The activity of mecillinam vs Enterobacteriaceae resistant to 3rd generation cephalosporins in Bristol, UK Welsh Antimicrobial Study Group Grŵp Astudio Wrthfiotegau Cymru G Weston1, KE Bowker1, A Noel1, AP MacGowan1, M Wootton2, TR Walsh2, RA Howe2 (1) BCARE, North Bristol NHS Trust, Bristol BS10 5NB (2) Welsh Antimicrobial Study Group, NPHS Wales, University Hospital of Wales, CF14 4XW Introduction Results Results Results Figure 1: Population Distributions of Mecillinam MICs for E. Figure 2: Population Distributions of MICs for ESBL- Resistance in coliforms to 3rd generation 127 isolates were identified by screening of which 123 were confirmed as resistant to CTX or coli (n=72), NON-E. coli Enterobacteriaceae (n=47) and multi- producing E. coli (n=67) against mecillinam or mecillinam + cephalosporins (3GC) is an increasing problem resistant strains (n=39) clavulanate CAZ by BSAC criteria. The majority of 3GC- both in hospitals and the community. Oral options MR Non-E. coli E. coli Mecalone Mec+Clav resistant strains were E. coli 60.2%, followed by for the treatment of these organisms is often 35 50 Enterobacter spp. 16.2%, Klebsiella spp. 12.2%, limited due to resistance to multiple antimicrobial 45 and others (Citrobacter spp., Morganella spp., 30 classes. Mecillinam, an amidinopenicillin that is 40 Pantoea spp., Serratia spp.) 11.4%. 25 available in Europe as the oral pro-drug 35 All isolates were susceptible to meropenem with s 20 30 e s pivmecillinam, is stable to many beta-lactamases. t e a t l a mecillinam the next most active agent with more l o 25 o s We aimed to establish the activity of mecillinam i s i 15 % than 95% of isolates susceptible (table). % against Enterobacteriaceae resistant to 3GC. 20 Although resistance rates to unrelated 10 15 antimicrobials was high, susceptibility to 10 mecillinam was maintained even in isolates 5 5 0 multiply-resistant to 3GC, trimethoprim, 0 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 nitrofurantoin, gentamicin, and ciprofloxacin 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 Methods MIC (mg/L) MIC(mg/L) (Figure 1). Coliforms isolated from urine samples routinely Conclusions submitted to North Bristol NHS Trust were screened for resistance to 3rd generation Susceptibilities of E. coli (n=72)and NON- E. coli Enterobacteriaceae (n=47) resistant to 3GC Mecillinam maintains good activity against cephalosporins (3GC) using a 10 g • cefpodoxime disc on Isosensitest agar. Resistant E. coli NON-E. coli Enterobacteriaceae resistant to 3GC. * * isolates were identified using the BBL Crystal ID MIC50 MIC90 %S MIC50 MIC90 %S system. Further susceptibility testing was •Mecillinam is active against prevalent strains of Meropenem 0.015 0.015 100 0.015 0.06 100 ESBL-producing E. coli. performed against a range of beta-lactam and un- Mecillinam 1 4 97.2** 2 8 95.6** related antimicrobials by agar dilution MIC using Ertapenem 0.12 0.5 95.5 0.12 1 83.0 The activity of mecillinam against ESBL- an inoculum of 104 cfu/spot on Mueller-Hinton • agar. Phenotypic characterisation of 3GC Cefepime 16 64 1.3 4 32 12.5 producing E. coli can be further enhanced by the resistance was determined from MICs for Ceftazidime 32 >128 1.4 >128 >128 4.3 addition of a beta-lactamase inhibitor such as clavulanate. Cefotaxime (CTX) and Ceftazidime (CAZ) with Cefotaxime 32 64 6.9 16 64 4.3 and without clavulanate at a fixed concentration Ciprofloxacin 128 >128 12.5 32 >128 27.7 of 2 mg/L. Strains were categorised as ESBL- •Oral formulations of mecillinam should be Gentamicin 16 128 33.3 32 128 29.8 considered as possible agents for the treatment of positive if they had a a CTX or CAZ MIC Trimethoprim 4 64 11.1** 64 128 27.7** >1mg/L which decreased ≥4-fold on addition of uncomplicated urinary tract infections caused ** ** rd clavulanate. Nitrofurantoin 64 128 45.8 64 128 40.4 byEnterobacteriaceae resistant to 3 generation cephalosporins. *-BSAC Breakpoints, ** - BSAC Urinary Breakpoints.
Recommended publications
  • Mecillinam (FL 1060), a 6,3-Amidinopenicillanic Acid Derivative: Bactericidal Action and Synergy in Vitro L
    ANTUCROBIAL AGENTS AND CHEzOTHrAPY, Sept. 1975, p. 271-276 Vol. 8, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. Mecillinam (FL 1060), a 6,3-Amidinopenicillanic Acid Derivative: Bactericidal Action and Synergy In Vitro L. TYBRING* AND N. H. MELCHIOR Bacteriological Research Department, Leo Pharmaceutical Products, DK-2750 Ballerup, Denmark Received for publication 26 December 1974 A newly described 6d-amidinopenicillanic acid derivative, mecillinam (for- merly called FL 1060), showed a high in vitro activity against Enterobacteriac- eae. The effect on Escherichia coli was bactericidal and was due to lysis of the cells. The longer the culture grew under the influence of mecillinam or the lower the inoculum, the greater the bactericidal effect. The morphology of the cells changed towards large spheric forms (2 to 5 ,m) under the influence of mecillinam. Consequently a great discrepancy between the optical density and the viable count was seen. The morphologically abnormal cells could be protected against lysis in vitro by addition of ionized compounds such as sodium chloride. Abnormal cells were more sensitive to ampicillin than normal cells. As expected synergy could be demonstrated between mecillinam and ampicillin. This was marked under experimental conditions where the abnormal cells were protected against lysis. In a previous paper from this laboratory a new the liquid media was measured by the cryostatic group of penicillanic acid derivatives, 6,- method using a Knauer type M osmometer, and the amidinopenicillanic acids, with unusual in specific conductivity was measured as millisiemens at vitro antibacterial properties was described (4). 36 C using a conductivity meter, Radiometer type One member of CDM 2c.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • Guidelines on Urinary and Male Genital Tract Infections
    European Association of Urology GUIDELINES ON URINARY AND MALE GENITAL TRACT INFECTIONS K.G. Naber, B. Bergman, M.C. Bishop, T.E. Bjerklund Johansen, H. Botto, B. Lobel, F. Jimenez Cruz, F.P. Selvaggi TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 Classification 5 1.2 References 6 2. UNCOMPLICATED UTIS IN ADULTS 7 2.1 Summary 7 2.2 Background 8 2.3 Definition 8 2.4 Aetiological spectrum 9 2.5 Acute uncomplicated cystitis in pre-menopausal, non-pregnant women 9 2.5.1 Diagnosis 9 2.5.2 Treatment 10 2.5.3 Post-treatment follow-up 11 2.6 Acute uncomplicated pyelonephritis in pre-menopausal, non-pregnant women 11 2.6.1 Diagnosis 11 2.6.2 Treatment 12 2.6.3 Post-treatment follow-up 12 2.7 Recurrent (uncomplicated) UTIs in women 13 2.7.1 Background 13 2.7.2 Prophylactic antimicrobial regimens 13 2.7.3 Alternative prophylactic methods 14 2.8 UTIs in pregnancy 14 2.8.1 Epidemiology 14 2.8.2 Asymptomatic bacteriuria 15 2.8.3 Acute cystitis during pregnancy 15 2.8.4 Acute pyelonephritis during pregnancy 15 2.9 UTIs in post-menopausal women 15 2.10 Acute uncomplicated UTIs in young men 16 2.10.1 Pathogenesis and risk factors 16 2.10.2 Diagnosis 16 2.10.3 Treatment 16 2.11 References 16 3. UTIs IN CHILDREN 20 3.1 Summary 20 3.2 Background 20 3.3 Aetiology 20 3.4 Pathogenesis 20 3.5 Signs and symptoms 21 3.5.1 New-borns 21 3.5.2 Children < 6 months of age 21 3.5.3 Pre-school children (2-6 years of age) 21 3.5.4 School-children and adolescents 21 3.5.5 Severity of a UTI 21 3.5.6 Severe UTIs 21 3.5.7 Simple UTIs 21 3.5.8 Epididymo orchitis 22 3.6 Diagnosis 22 3.6.1 Physical examination 22 3.6.2 Laboratory tests 22 3.6.3 Imaging of the urinary tract 23 3.7 Schedule of investigation 24 3.8 Treatment 24 3.8.1 Severe UTIs 25 3.8.2 Simple UTIs 25 3.9 References 26 4.
    [Show full text]
  • Diabetes Starting Earlier
    Original Article Activity of Mecillinam and Clavulanic Acid on ESBL Producing and Non- ESBL Producing Escherichia Coli Isolated From UTI Cases Khandaker Shadia1, Abdullah Akhtar Ahmed1, Lovely Barai2, Fahmida Rahman1, Nusrat Tahmina3 and J. Ashraful Haq1 1Department of Microbiology, Ibrahim Medical College; 2Department of Microbiology, BIRDEM General Hospital; 3Department of Microbiology, Primeasia University Abstract Mecillinam is one of the very few oral antibacterial agents used against extended spectrum β- lactamase (ESBL) producing Escherichia coli (E. coli) causing urinary tract infection (UTI)). It is reported that, resistance to mecillinam can be reversed to some extent by adding beta lactamase inhibitor like clavulanic acid. The present study was aimed to determine in-vitro activity of mecillinam and mecillinam-clavulanic acid combination on the susceptibility of ESBL producing and non-ESBL producing E. coli. Total 124 E. coli (78 ESBL positive and 46 ESBL negative) isolates from urine samples of patients with UTI were included in the study. Organisms were isolated from patients attending BIRDEM General Hospital from July 2012 to December 2012. ESBL production was tested by double disc synergy test. Minimum inhibitory concentration (MIC) of mecillinam and clavulanic acid against E. coli was determined by agar dilution method. Of the total E. coli isolates, 62.9% was ESBL positive and 37.1% was negative for ESBL. Out of ESBL positive isolates, 75.6% was sensitive to mecillinam while ESBL negative isolates showed the sensitivity as 67.4%. The sensitivity to mecillinam of ESBL positive and negative isolates increased to 85.9% and 86.9% respectively by addition of clavulanic acid with mecillinam.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-Lactams
    Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-lactams The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Srisuknimit, Veerasak. 2019. Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-lactams. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029540 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! ! !"#$%&'()*+$"',-.(.*/0*1-2'(3/45$)&"*("*6-',()(55("78-.(.'&"'* !"#$%&'()())*+,#*-.*+** &"3** ('.*9",(:('(/"*:$*;-'&75&)'&%.! ! ! "!#$%%&'()($*+!,'&%&+(&#! ! -.! ! ! !""#$%$&'(#)%*&+),)-' ! ! (*! ! ! /0&!1&,)'(2&+(!*3!40&2$%('.!)+#!40&2$5)6!7$*6*8.! ! ! $+!,)'($)6!3963$662&+(!*3!(0&!'&:9$'&2&+(%! ! 3*'!(0&!#&8'&&!*3! ! 1*5(*'!*3!;0$6*%*,0.! ! $+!(0&!%9-<&5(!*3! ! ./",)%-#0' ! ! ! ! ! ! =)'>)'#!?+$>&'%$(.! ! 4)2-'$#8&@!A)%%)509%&((%! ! A).!BCDE! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! F!BCDE!G!H&&')%)I!J'$%9I+$2$(! ! "66!'$80(%!'&%&'>&#K! ! !"##$%&'&"()*+,-"#(%#.*/%(0$##(%*!')"$1*2'3)$* 4$$%'#'5*6%"#75)"8"&* * * * */%(0$##(%*679'))$*:'15$%* * !"#$%&'()*+$"',-.(.*/0*1-2'(3/45$)&"*("*6-',()(55("78-.(.'&"'*!"#$%&'()())*+,#*-.*+*&"3* ('.*9",(:('(/"*:$*;-'&75&)'&%.*
    [Show full text]
  • Lactam Antibiotics Against Escherichia Coli Resides in Different Penic
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 1995, p. 812–818 Vol. 39, No. 4 0066-4804/95/$04.0010 Copyright q 1995, American Society for Microbiology Target for Bacteriostatic and Bactericidal Activities of b-Lactam Antibiotics against Escherichia coli Resides in Different Penicillin-Binding Proteins† GIUSEPPE SATTA,1 GIUSEPPE CORNAGLIA,2 ANNARITA MAZZARIOL,2 GRAZIA GOLINI,2 2 2 SEBASTIANO VALISENA, AND ROBERTA FONTANA * Istituto di Microbiologia, Universita` Cattolica del Sacro Cuore, I-00168 Rome,1 and Istituto di Microbiologia, Universita` degli Studi di Verona, I-37134 Verona,2 Italy Received 9 August 1994/Returned for modification 14 November 1994/Accepted 23 January 1995 The relationship between cell-killing kinetics and penicillin-binding protein (PBP) saturation has been evaluated in the permeability mutant Escherichia coli DC2 in which the antimicrobial activity of b-lactams has been described as being directly related to the extent of saturation of the PBP target(s). Saturation of a single PBP by cefsulodin (PBP 1s), mecillinam (PBP 2), and aztreonam (PBP 3) resulted in a slow rate of killing (2.5-, 1.5-, and 0.8-log-unit decreases in the number of CFU per milliliter, respectively, in 6 h). Saturation of two of the three essential PBPs resulted in a marked increase in the rate of killing, which reached the maximum value when PBPs 1s and 2 were simultaneously saturated by a combination of cefsulodin and mecillinam (4.7-log- unit decrease in the number of CFU per milliliter in 6 h). Inactivation of all three essential PBPs by the combination of cefsulodin, mecillinam, and aztreonam further increased the killing kinetics (5.5-log-unit decrease in the number of CFU per milliliter), and this was not significantly changed upon additional saturation of the nonessential PBPs 5 and 6 by cefoxitin.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Early Childhood Antibiotic Treatment for Otitis Media and Other Respiratory Tract Infections Is Associated with Risk of Type
    Diabetes Care Volume 43, May 2020 991 Mona-Lisa Wernroth,1,2 Katja Fall,3,4 Early Childhood Antibiotic Bodil Svennblad,5 Jonas F. Ludvigsson,4,6 Arvid Sjolander,¨ 4 Catarina Almqvist,4,7 and Treatment for Otitis Media and Tove Fall1 Other Respiratory Tract Infections Is Associated With Risk of Type 1 Diabetes: A Nationwide Register- Based Study With Sibling Analysis EPIDEMIOLOGY/HEALTH SERVICES RESEARCH Diabetes Care 2020;43:991–999 | https://doi.org/10.2337/dc19-1162 OBJECTIVE The effect of early-life antibiotic treatment on the risk of type 1 diabetes is debated. This study assessed this question, applying a register-based design in children up to age 10 years including a large sibling-control analysis. RESEARCH DESIGN AND METHODS All singleton children (n 5 797,318) born in Sweden between 1 July 2005 and 1 30 September 2013 were included and monitored to 31 December 2014. Cox Molecular Epidemiology, Department of Med- ical Sciences, and Science for Life Laboratory, proportional hazards models, adjusted for parental and perinatal characteristics, Uppsala University, Uppsala, Sweden were applied, and stratified models were used to account for unmeasured con- 2Uppsala Clinical Research Center, Uppsala Uni- founders shared by siblings. versity, Uppsala, Sweden 3Clinical Epidemiology and Biostatistics, School RESULTS of Medical Sciences, Orebro¨ University, Orebro,¨ Sweden Type 1 diabetes developed in 1,297 children during the follow-up (median 4.0 years 4Department of Medical Epidemiology and Bio- [range 0–8.3]). Prescribed antibiotics in the 1st year of life (23.8%) were associated statistics, Karolinska Institutet, Stockholm, Sweden with anincreased risk oftype1diabetes(adjustedhazard ratio[HR]1.19[95%CI1.05– 5Department of Surgical Sciences, Uppsala Uni- versity, Uppsala, Sweden 1.36]), with larger effect estimates among children delivered by cesarean section 6 ¨ P 5 Department of Pediatrics, Orebro University ( for interaction 0.016).
    [Show full text]
  • Guideline for Prescribing of Pivmecillinam
    Hull & East Riding Prescribing Committee Guideline for Prescribing of Pivmecillinam 1. BACKGROUND Pivmecillinam is an antibiotic belonging to the penicillins class of antibacterials. It has significant activity against many Gram-negative bacteria including E coli, klebsiella, enterobacter, and salmonellae. It is not active against Ps aeruginosa or enterococci. 2. INDICATION Pivmecillinam is licensed in adults and children for the treatment of mecillinam sensitive organisms, including urinary tract infections and salmonellosis In Hull and East Yorkshire area pivmecillinam is a RESTRICTED antibiotic. Use should be reserved for the treatment of recurrent/resistant UTI in adults and children > 40kg with a limited number of treatment options AND prescribed by or recommended by a Consultant Microbiologist or Consultant in Infectious Disease 3. DOSE / DURATION Uncomplicated Lower Urinary Tract Infection 400mg STAT followed by 200mg 8hrly (To complete 3 days in WOMEN, 7 days in MEN) Recurrent Lower Urinary Tract Infections Usual dose is 400 mg (TWO tablets) three times daily. Dose and duration as advised by specialist – may be long term In patients with severe renal impairment accumulation can occur. Dose reduction may be advised for long term use. 4. CONTRAINDICATIONS / CAUTIONS Avoid use is patients with hypersensitivity to the drug substance or any of the other ingredients; hypersensitivity to penicillins and/or cephalosporins; oesophageal strictures and/or obstructive changes in the gastrointestinal tract; a predisposition to carnitine deficiency; porphyria; pregnancy. May be used during breast-feeding and no effects on the infant are anticipated. However, as for other penicillins, trace quantities of mecillinam is excreted into breast milk with the possible risk of sensitisation and subsequent allergic reactions in a sensitised infant.
    [Show full text]