Mechanisms and Dynamics of Mecillinam Resistance in Escherichia Coli

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms and Dynamics of Mecillinam Resistance in Escherichia Coli Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1375 Mechanisms and Dynamics of Mecillinam Resistance in Escherichia coli ELISABETH THULIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0090-0 UPPSALA urn:nbn:se:uu:diva-330856 2017 Dissertation presented at Uppsala University to be publicly examined in A1:111a, BMC, Husargatan 3, Uppsala, Friday, 24 November 2017 at 09:00 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Professor Laura Piddock ( Institute of Microbiology and Infection, University of Birmingham, UK). Abstract Thulin, E. 2017. Mechanisms and Dynamics of Mecillinam Resistance in Escherichia coli. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1375. 69 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0090-0. The introduction of antibiotics in healthcare is one of the most important medical achievements with regard to reducing human morbidity and mortality. However, bacterial pathogens have acquired antibiotic resistance at an increasing rate, and due to a high prevalence of resistance to some antibiotics they can no longer be used therapeutically. The antibiotic mecillinam, which inhibits the penicillin-binding protein PBP2, however, is an exception since mecillinam resistance (MecR) prevalence has remained low. This is particularly interesting since laboratory experiments have shown that bacteria can rapidly acquire MecR mutations by a multitude of different types of mutations. In this thesis, I examined mechanisms and dynamics of mecillinam resistance in clinical and laboratory isolates of Escherichia coli. Only one type of MecR mutations (cysB) was found in the clinical strains, even though laboratory experiments demonstrate that more than 100 genes can confer resistance Fitness assays showed that cysB mutants have higher fitness than most other MecR mutants, which is likely to contribute to their dominance in clinical settings. To determine if the mecillinam resistant strains could compensate for their fitness cost, six different MecR mutants (cysB, mrdA, spoT, ppa, aspS and ubiE) were evolved for 200-400 generations. All evolved mutants showed increased fitness, but the compensation was associated with loss of resistance in the majority of cases. This will also contribute to the rarity of clinical MecR isolates with chromosomal resistance mutations. How MecR is mediated by cysB mutations was previously unclear, but in this thesis I propose and test a model for the mechanism of resistance. Thus, inactivation of CysB results in cellular depletion of cysteine that triggers an oxidative stress response. The response alters the intracellular levels of 450 proteins, and MecR is achieved by the increase of two of these, the LpoB and PBP1B proteins, which rescue the cells with a mecillinam-inhibited PBP2. Mecillinam is used for UTI treatments and to investigate mecillinam resistance in a more host- like milieu, MecR strains were grown in urine and resistance was examined. Interestingly, this study showed that neither laboratory, nor clinical cysB mutants are resistant in urine, most likely because the cysteine present in the urine phenotypically reverts the bacteria to susceptibility. These findings suggest that mecillinam can be used to treat also those clinical strains that are identified as MecR in standard laboratory tests, and that testing of mecillinam susceptibility in the laboratory ought to be performed in media that mimics urine to obtain clinically relevant results. In summary, the work described in this thesis has increased ourgeneral knowledge of mecillinam resistance and its evolution. Hopefully this knowledge can be put to good use in clinical settings to reduce the negative impact of antibiotic resistance. Keywords: Mecillinam, Antibiotic resistance, Escherichia coli, Urinary tract infections, Fitness, Penicillin binding proteins, cysteine biosynthesis Elisabeth Thulin, Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-75123 Uppsala, Sweden. © Elisabeth Thulin 2017 ISSN 1651-6206 ISBN 978-91-513-0090-0 urn:nbn:se:uu:diva-330856 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330856) If there is one thing the history of evolution has taught us it’s that life will not be contained. Life breaks free, it expands to new territories and crashes through barriers, painfully, maybe even dangerously, but, uh… well, there it is. - Dr. Ian Malcolm For Måns, Alvar and Irma Members of the committee Faculty examiner Professor Laura Piddock Institute of Microbiology and Infection University of Birmingham, UK Members of the evaluation committee Professor Roland Möllby Department of Microbiology, Tumor and Cell Biology Karolinska Institute, Sweden Professor Staffan Svärd Department of Cell and Molecular Biology Uppsala University, Sweden Docent Göte Swedberg, Department of Medical Biochemistry and Microbiology Uppsala University, Sweden Chairman of the thesis defence Professor Staffan Johansson Department of Medical Biochemistry and Microbiology Uppsala University, Sweden List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Thulin, E., Sundqvist, M., Andersson, D. (2015) Amdinocillin (me- cillinam) resistance mutations in clinical isolates and laboratory- selected mutants of Escherichia coli. Antimicrobial Agents and Chemotherapy, 59:1718–1727 II Knopp, M., Thulin, E., Ekstrand, E., Andersson, D. (2017) Com- pensatory evolution in mecillinam-resistant Escherichia coli. Manu- script. III Thulin, E., Andersson, D. (2017) An oxidative stress-induced by- pass mechanism confers mecillinam resistance in Escherichia coli. Submitted manuscript. IV Thulin, E., Thulin, M., Andersson, D. (2017) Reversion of high- level mecillinam resistance to susceptibility in Escherichia coli dur- ing growth in urine. EBioMedicine, 23:111–118 Reprints were made with permission from the respective publishers. Work not included in this thesis: Lofton, H., Pränting, M., Thulin, E., Andersson, D. (2013) Resistance mechanisms to antimicrobial peptides LL-37, CNY100HL and Wheat Germ Histones. PLOS ONE, 8:e68875 Contents Introduction ................................................................................................... 13 Antibiotics ................................................................................................ 14 Antibiotic resistance ................................................................................. 16 Mechanisms of resistance .................................................................... 17 Spread of resistance ............................................................................. 20 The cost of being resistant ........................................................................ 21 β-lactam antibiotics ................................................................................... 23 The β-lactam target – the cell wall ....................................................... 23 Penicillin-binding proteins ................................................................... 25 β-lactam resistance ............................................................................... 29 β-lactams in therapeutic use ................................................................. 29 Mecillinam ................................................................................................ 33 Mecillinam resistance ............................................................................... 34 The importance of cysteine biosynthesis in mecillinam resistance ..... 36 Escherichia coli – the accidental pathogen .............................................. 38 Urinary tract infections ........................................................................ 39 Present investigations .................................................................................... 42 Paper I: Amdinocillin (Mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli ................... 42 Paper II: Compensatory evolution in mecillinam-resistant Escherichia coli ............................................................................................................ 43 Paper III: An oxidative stress-induced bypass-mechanism confers mecillinam resistance in Escherichia coli ................................................ 45 Paper IV: Reversion of high-level mecillinam resistance to complete susceptibility in Escherichia coli during growth in urine ......................... 48 Concluding remarks ...................................................................................... 51 Svensk sammanfattning ................................................................................. 53 Acknowledgements ....................................................................................... 55 References ..................................................................................................... 59 Abbreviations AUM artificial urine medium bp base pair DNA deoxyribonucleic acid DTT dithiothreitol EAU European Association of Urology ESBL extended spectrum β-lactamase ESCMID European Society of Clinical Microbiology and Infectious Diseases GTase glycosyltransferase HGT horizontal gene transfer HMW high molecular weight ICE integrative conjugative element IDSA Infectious Diseases Society of America kb kilobase LMW low molecular weight Mec mecillinam MecR mecillinam-resistant
Recommended publications
  • The Activity of Mecillinam Vs Enterobacteriaceae Resistant to 3Rd Generation Cephalosporins in Bristol, UK
    The activity of mecillinam vs Enterobacteriaceae resistant to 3rd generation cephalosporins in Bristol, UK Welsh Antimicrobial Study Group Grŵp Astudio Wrthfiotegau Cymru G Weston1, KE Bowker1, A Noel1, AP MacGowan1, M Wootton2, TR Walsh2, RA Howe2 (1) BCARE, North Bristol NHS Trust, Bristol BS10 5NB (2) Welsh Antimicrobial Study Group, NPHS Wales, University Hospital of Wales, CF14 4XW Introduction Results Results Results Figure 1: Population Distributions of Mecillinam MICs for E. Figure 2: Population Distributions of MICs for ESBL- Resistance in coliforms to 3rd generation 127 isolates were identified by screening of which 123 were confirmed as resistant to CTX or coli (n=72), NON-E. coli Enterobacteriaceae (n=47) and multi- producing E. coli (n=67) against mecillinam or mecillinam + cephalosporins (3GC) is an increasing problem resistant strains (n=39) clavulanate CAZ by BSAC criteria. The majority of 3GC- both in hospitals and the community. Oral options MR Non-E. coli E. coli Mecalone Mec+Clav resistant strains were E. coli 60.2%, followed by for the treatment of these organisms is often 35 50 Enterobacter spp. 16.2%, Klebsiella spp. 12.2%, limited due to resistance to multiple antimicrobial 45 and others (Citrobacter spp., Morganella spp., 30 classes. Mecillinam, an amidinopenicillin that is 40 Pantoea spp., Serratia spp.) 11.4%. 25 available in Europe as the oral pro-drug 35 All isolates were susceptible to meropenem with s 20 30 e s pivmecillinam, is stable to many beta-lactamases. t e a t l a mecillinam the next most active agent with more l o 25 o s We aimed to establish the activity of mecillinam i s i 15 % than 95% of isolates susceptible (table).
    [Show full text]
  • Mecillinam (FL 1060), a 6,3-Amidinopenicillanic Acid Derivative: Bactericidal Action and Synergy in Vitro L
    ANTUCROBIAL AGENTS AND CHEzOTHrAPY, Sept. 1975, p. 271-276 Vol. 8, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. Mecillinam (FL 1060), a 6,3-Amidinopenicillanic Acid Derivative: Bactericidal Action and Synergy In Vitro L. TYBRING* AND N. H. MELCHIOR Bacteriological Research Department, Leo Pharmaceutical Products, DK-2750 Ballerup, Denmark Received for publication 26 December 1974 A newly described 6d-amidinopenicillanic acid derivative, mecillinam (for- merly called FL 1060), showed a high in vitro activity against Enterobacteriac- eae. The effect on Escherichia coli was bactericidal and was due to lysis of the cells. The longer the culture grew under the influence of mecillinam or the lower the inoculum, the greater the bactericidal effect. The morphology of the cells changed towards large spheric forms (2 to 5 ,m) under the influence of mecillinam. Consequently a great discrepancy between the optical density and the viable count was seen. The morphologically abnormal cells could be protected against lysis in vitro by addition of ionized compounds such as sodium chloride. Abnormal cells were more sensitive to ampicillin than normal cells. As expected synergy could be demonstrated between mecillinam and ampicillin. This was marked under experimental conditions where the abnormal cells were protected against lysis. In a previous paper from this laboratory a new the liquid media was measured by the cryostatic group of penicillanic acid derivatives, 6,- method using a Knauer type M osmometer, and the amidinopenicillanic acids, with unusual in specific conductivity was measured as millisiemens at vitro antibacterial properties was described (4). 36 C using a conductivity meter, Radiometer type One member of CDM 2c.
    [Show full text]
  • Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
    ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org).
    [Show full text]
  • AMEG Categorisation of Antibiotics
    12 December 2019 EMA/CVMP/CHMP/682198/2017 Committee for Medicinal Products for Veterinary use (CVMP) Committee for Medicinal Products for Human Use (CHMP) Categorisation of antibiotics in the European Union Answer to the request from the European Commission for updating the scientific advice on the impact on public health and animal health of the use of antibiotics in animals Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 29 October 2018 Adopted by the CVMP for release for consultation 24 January 2019 Adopted by the CHMP for release for consultation 31 January 2019 Start of public consultation 5 February 2019 End of consultation (deadline for comments) 30 April 2019 Agreed by the Antimicrobial Advice ad hoc Expert Group (AMEG) 19 November 2019 Adopted by the CVMP 5 December 2019 Adopted by the CHMP 12 December 2019 Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Categorisation of antibiotics in the European Union Table of Contents 1. Summary assessment and recommendations .......................................... 3 2. Introduction ............................................................................................ 7 2.1. Background ........................................................................................................
    [Show full text]
  • Guidelines on Urinary and Male Genital Tract Infections
    European Association of Urology GUIDELINES ON URINARY AND MALE GENITAL TRACT INFECTIONS K.G. Naber, B. Bergman, M.C. Bishop, T.E. Bjerklund Johansen, H. Botto, B. Lobel, F. Jimenez Cruz, F.P. Selvaggi TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 Classification 5 1.2 References 6 2. UNCOMPLICATED UTIS IN ADULTS 7 2.1 Summary 7 2.2 Background 8 2.3 Definition 8 2.4 Aetiological spectrum 9 2.5 Acute uncomplicated cystitis in pre-menopausal, non-pregnant women 9 2.5.1 Diagnosis 9 2.5.2 Treatment 10 2.5.3 Post-treatment follow-up 11 2.6 Acute uncomplicated pyelonephritis in pre-menopausal, non-pregnant women 11 2.6.1 Diagnosis 11 2.6.2 Treatment 12 2.6.3 Post-treatment follow-up 12 2.7 Recurrent (uncomplicated) UTIs in women 13 2.7.1 Background 13 2.7.2 Prophylactic antimicrobial regimens 13 2.7.3 Alternative prophylactic methods 14 2.8 UTIs in pregnancy 14 2.8.1 Epidemiology 14 2.8.2 Asymptomatic bacteriuria 15 2.8.3 Acute cystitis during pregnancy 15 2.8.4 Acute pyelonephritis during pregnancy 15 2.9 UTIs in post-menopausal women 15 2.10 Acute uncomplicated UTIs in young men 16 2.10.1 Pathogenesis and risk factors 16 2.10.2 Diagnosis 16 2.10.3 Treatment 16 2.11 References 16 3. UTIs IN CHILDREN 20 3.1 Summary 20 3.2 Background 20 3.3 Aetiology 20 3.4 Pathogenesis 20 3.5 Signs and symptoms 21 3.5.1 New-borns 21 3.5.2 Children < 6 months of age 21 3.5.3 Pre-school children (2-6 years of age) 21 3.5.4 School-children and adolescents 21 3.5.5 Severity of a UTI 21 3.5.6 Severe UTIs 21 3.5.7 Simple UTIs 21 3.5.8 Epididymo orchitis 22 3.6 Diagnosis 22 3.6.1 Physical examination 22 3.6.2 Laboratory tests 22 3.6.3 Imaging of the urinary tract 23 3.7 Schedule of investigation 24 3.8 Treatment 24 3.8.1 Severe UTIs 25 3.8.2 Simple UTIs 25 3.9 References 26 4.
    [Show full text]
  • Diabetes Starting Earlier
    Original Article Activity of Mecillinam and Clavulanic Acid on ESBL Producing and Non- ESBL Producing Escherichia Coli Isolated From UTI Cases Khandaker Shadia1, Abdullah Akhtar Ahmed1, Lovely Barai2, Fahmida Rahman1, Nusrat Tahmina3 and J. Ashraful Haq1 1Department of Microbiology, Ibrahim Medical College; 2Department of Microbiology, BIRDEM General Hospital; 3Department of Microbiology, Primeasia University Abstract Mecillinam is one of the very few oral antibacterial agents used against extended spectrum β- lactamase (ESBL) producing Escherichia coli (E. coli) causing urinary tract infection (UTI)). It is reported that, resistance to mecillinam can be reversed to some extent by adding beta lactamase inhibitor like clavulanic acid. The present study was aimed to determine in-vitro activity of mecillinam and mecillinam-clavulanic acid combination on the susceptibility of ESBL producing and non-ESBL producing E. coli. Total 124 E. coli (78 ESBL positive and 46 ESBL negative) isolates from urine samples of patients with UTI were included in the study. Organisms were isolated from patients attending BIRDEM General Hospital from July 2012 to December 2012. ESBL production was tested by double disc synergy test. Minimum inhibitory concentration (MIC) of mecillinam and clavulanic acid against E. coli was determined by agar dilution method. Of the total E. coli isolates, 62.9% was ESBL positive and 37.1% was negative for ESBL. Out of ESBL positive isolates, 75.6% was sensitive to mecillinam while ESBL negative isolates showed the sensitivity as 67.4%. The sensitivity to mecillinam of ESBL positive and negative isolates increased to 85.9% and 86.9% respectively by addition of clavulanic acid with mecillinam.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • WO 2010/025328 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 March 2010 (04.03.2010) WO 2010/025328 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/US2009/055306 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 28 August 2009 (28.08.2009) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/092,497 28 August 2008 (28.08.2008) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): FOR¬ GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, EST LABORATORIES HOLDINGS LIMITED [IE/ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —]; 18 Parliament Street, Milner House, Hamilton, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, Bermuda HM12 (BM).
    [Show full text]
  • Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-Lactams
    Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-lactams The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Srisuknimit, Veerasak. 2019. Enzymatic Synthesis of Peptidoglycan in Methicillin-Resistant Staphylococcus Aureus and Its Inhibition by Beta-lactams. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029540 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! ! !"#$%&'()*+$"',-.(.*/0*1-2'(3/45$)&"*("*6-',()(55("78-.(.'&"'* !"#$%&'()())*+,#*-.*+** &"3** ('.*9",(:('(/"*:$*;-'&75&)'&%.! ! ! "!#$%%&'()($*+!,'&%&+(&#! ! -.! ! ! !""#$%$&'(#)%*&+),)-' ! ! (*! ! ! /0&!1&,)'(2&+(!*3!40&2$%('.!)+#!40&2$5)6!7$*6*8.! ! ! $+!,)'($)6!3963$662&+(!*3!(0&!'&:9$'&2&+(%! ! 3*'!(0&!#&8'&&!*3! ! 1*5(*'!*3!;0$6*%*,0.! ! $+!(0&!%9-<&5(!*3! ! ./",)%-#0' ! ! ! ! ! ! =)'>)'#!?+$>&'%$(.! ! 4)2-'$#8&@!A)%%)509%&((%! ! A).!BCDE! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! F!BCDE!G!H&&')%)I!J'$%9I+$2$(! ! "66!'$80(%!'&%&'>&#K! ! !"##$%&'&"()*+,-"#(%#.*/%(0$##(%*!')"$1*2'3)$* 4$$%'#'5*6%"#75)"8"&* * * * */%(0$##(%*679'))$*:'15$%* * !"#$%&'()*+$"',-.(.*/0*1-2'(3/45$)&"*("*6-',()(55("78-.(.'&"'*!"#$%&'()())*+,#*-.*+*&"3* ('.*9",(:('(/"*:$*;-'&75&)'&%.*
    [Show full text]
  • Lactam Antibiotics Against Escherichia Coli Resides in Different Penic
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Apr. 1995, p. 812–818 Vol. 39, No. 4 0066-4804/95/$04.0010 Copyright q 1995, American Society for Microbiology Target for Bacteriostatic and Bactericidal Activities of b-Lactam Antibiotics against Escherichia coli Resides in Different Penicillin-Binding Proteins† GIUSEPPE SATTA,1 GIUSEPPE CORNAGLIA,2 ANNARITA MAZZARIOL,2 GRAZIA GOLINI,2 2 2 SEBASTIANO VALISENA, AND ROBERTA FONTANA * Istituto di Microbiologia, Universita` Cattolica del Sacro Cuore, I-00168 Rome,1 and Istituto di Microbiologia, Universita` degli Studi di Verona, I-37134 Verona,2 Italy Received 9 August 1994/Returned for modification 14 November 1994/Accepted 23 January 1995 The relationship between cell-killing kinetics and penicillin-binding protein (PBP) saturation has been evaluated in the permeability mutant Escherichia coli DC2 in which the antimicrobial activity of b-lactams has been described as being directly related to the extent of saturation of the PBP target(s). Saturation of a single PBP by cefsulodin (PBP 1s), mecillinam (PBP 2), and aztreonam (PBP 3) resulted in a slow rate of killing (2.5-, 1.5-, and 0.8-log-unit decreases in the number of CFU per milliliter, respectively, in 6 h). Saturation of two of the three essential PBPs resulted in a marked increase in the rate of killing, which reached the maximum value when PBPs 1s and 2 were simultaneously saturated by a combination of cefsulodin and mecillinam (4.7-log- unit decrease in the number of CFU per milliliter in 6 h). Inactivation of all three essential PBPs by the combination of cefsulodin, mecillinam, and aztreonam further increased the killing kinetics (5.5-log-unit decrease in the number of CFU per milliliter), and this was not significantly changed upon additional saturation of the nonessential PBPs 5 and 6 by cefoxitin.
    [Show full text]
  • WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
    WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Early Childhood Antibiotic Treatment for Otitis Media and Other Respiratory Tract Infections Is Associated with Risk of Type
    Diabetes Care Volume 43, May 2020 991 Mona-Lisa Wernroth,1,2 Katja Fall,3,4 Early Childhood Antibiotic Bodil Svennblad,5 Jonas F. Ludvigsson,4,6 Arvid Sjolander,¨ 4 Catarina Almqvist,4,7 and Treatment for Otitis Media and Tove Fall1 Other Respiratory Tract Infections Is Associated With Risk of Type 1 Diabetes: A Nationwide Register- Based Study With Sibling Analysis EPIDEMIOLOGY/HEALTH SERVICES RESEARCH Diabetes Care 2020;43:991–999 | https://doi.org/10.2337/dc19-1162 OBJECTIVE The effect of early-life antibiotic treatment on the risk of type 1 diabetes is debated. This study assessed this question, applying a register-based design in children up to age 10 years including a large sibling-control analysis. RESEARCH DESIGN AND METHODS All singleton children (n 5 797,318) born in Sweden between 1 July 2005 and 1 30 September 2013 were included and monitored to 31 December 2014. Cox Molecular Epidemiology, Department of Med- ical Sciences, and Science for Life Laboratory, proportional hazards models, adjusted for parental and perinatal characteristics, Uppsala University, Uppsala, Sweden were applied, and stratified models were used to account for unmeasured con- 2Uppsala Clinical Research Center, Uppsala Uni- founders shared by siblings. versity, Uppsala, Sweden 3Clinical Epidemiology and Biostatistics, School RESULTS of Medical Sciences, Orebro¨ University, Orebro,¨ Sweden Type 1 diabetes developed in 1,297 children during the follow-up (median 4.0 years 4Department of Medical Epidemiology and Bio- [range 0–8.3]). Prescribed antibiotics in the 1st year of life (23.8%) were associated statistics, Karolinska Institutet, Stockholm, Sweden with anincreased risk oftype1diabetes(adjustedhazard ratio[HR]1.19[95%CI1.05– 5Department of Surgical Sciences, Uppsala Uni- versity, Uppsala, Sweden 1.36]), with larger effect estimates among children delivered by cesarean section 6 ¨ P 5 Department of Pediatrics, Orebro University ( for interaction 0.016).
    [Show full text]