Tertiary and Later Igneous Rocks of the San Juan Basin Eugene Callaghan, 1951, Pp

Total Page:16

File Type:pdf, Size:1020Kb

Tertiary and Later Igneous Rocks of the San Juan Basin Eugene Callaghan, 1951, Pp New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/2 Tertiary and later igneous rocks of the San Juan Basin Eugene Callaghan, 1951, pp. 119-123 in: San Juan Basin (New Mexico and Arizona), Smith, C. T.; Silver, C.; [eds.], New Mexico Geological Society 2nd Annual Fall Field Conference Guidebook, 163 p. This is one of many related papers that were included in the 1951 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Since 1950, the New Mexico Geological Society has held an annual Fall Field Conference that visits some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed papers. These books have set the national standard for geologic guidebooks and are an important reference for anyone working in or around New Mexico. Free Downloads The New Mexico Geological Society has decided to make our peer-reviewed Fall Field Conference guidebook papers available for free download. Non-members will have access to guidebook papers, but not from the last two years. Members will have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of the societies' operating budget. Therefore, only research papers will be made available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content will remain available only in the printed guidebooks. This will encourage researchers to purchase the printed guidebooks, which are essential references for geologic research in New Mexico and surrounding areas. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from our website or printed and electronic publications may be reprinted or redistributed without our permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from our website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires permission. This page is intentionally left blank to maintain order of facing pages. I NEW MEXICOGEOLOGICAL SOCIETY * SECONDFIELD CONFERENCE *. SAN JUANBASIN . .:: ! TERTIARYAND LATERIGNEOus ROCKS OF THE As summarizedby Crossand Larsen..(1935, pp. SAN JUAN BASIN 50-54)the volcanicsequence of the San JuanMountains .. beganwith Lake Forkandesite of probablyearly Miocene ¯I EugeneCallaghan age.Any earlier volcanic center that supplied debris New MexicoBureau of Minesand MineralResources to the Animasand McDermottformations was destroyed by erosionduring early Tertiary time. The andeslte ! wasfollowed by thelatitic San juan -tuff and by a Publishedwork on the SanJuan Basin indicates hostof rhyoliticI latiticand andesitic flows and tuff- thatthe central part of theBasin is nearlyfree of breccias.These eruptions were followed by an erosion bodiesof igneousrock. However, the outermargin intervalwhich produced the SanJuan peneplain. I is ringedby scatteredigneous masses. Most of these Volcanismlater than the peneplain supplied thin massesare erosionalremnants and many are landmarks accumulationsof rhyolite and tuffand was followed : thathave a prominenceout of proportionto their areal in the RioGrande drainage area by basalticeruptions extent.The exactage of almostall of theigneous whichyielded rocks grouped as the Hinsdaleformation I rockbodies is unknown.The accumulation of great piles of Plioceneage. Some intrusive rocks in the Ouray of volcanlcsin theSan juan Mountains that extend regionare earlier than the erosion-surface at the base beyondthe margin of theBasin from the vicinity of of thevolcanic succession. Later, granular intrusive i DurangoI Coloradoto thatof Chama,New Mexico, rocks¯arealmostwhollyrestrictedtothe,lowerpart is believedto havebegun in Ollgocenetime and to of the volcanicsequence. Recent work in theSan haveextended well into Pliocene time. The central Juanregion has indicated that the beginning of :..’:. partof MountTaylor may be as old as lateMiocene volcanicaccumulation may wellhave been in J butmost of the associatedvolcanics are probably much Oligocenetime. younger.Large parts of theJemez volcanic sequer~ce eastof theBasin are probablyof Pleistoceneage. Many The LaPlataMountains northwest of Durango I of thevolcanic necks and associated flows on thewest Colorado,contain a variety of porphyriticrocks interJ- sideof theBasin are probably of Plioceneage. The mediatebetween diorite and monzonit%and even- valleyflows along U. S. Highway66 areprobably of granularsyenite, monzonite, and dioriteintruded latePleistocene age andthe McCartysflow may be intosedimentary rocks as youngas theMancos shale. I lessthan 1,200 years old. Evidence of volcanic No extrusiverocks occur in thisarea. Eckel, (!9491 activityearlier than the mld-Tertlary, hasbeen found p. 32)i statesthat these intrusive rocks may be late at thenorth side of the Basin.Those who took the Cretaceousor earlyTertiary. An earlymid-Tertlary fieldtrip of theSociety in 1950will remember the ageis suggestedby analogywith other eruptive areas I andesiticvolcanic debris in thesedimentary Anlmas in New Mexicoand Colorado. and McDermottformations of uppermostCretaceous and possiblyPaleocene age. Ute Mounta!nsouthwest of Cortez,Colorado, is I a steep-sidedmass which ¯rises 3,000 feet above the : Asidefrom the Son Juanand Jemezvolcanics, surroundingsurface. It is brieflydescribed by (Coffin. whichare considered as being.outsidetheBasin, the . 19211p. 121)as a stockand the rock was interpreted flowrocks and volcanic necks are dominantly of basaltic forCoffin as an andeslteporphyry. J or basaltic-andesitecomposition and appearance.Those at thewest side of the.Basin are abnormal in havingthe Themany small bodies of igneousrock that occur. lowsilica content of basalticrocks but a highcontent of alongthe western side of the.Basin between the Four I potash-~ which is suggestedmineralogically in their con Cornersand Galluphave been studied by Howel tentof biotiteand, in somelocalities, of leucite. Williams(19361. pp~ 111-172). Aside from the diorite ... Theserocks are therefore classified as trachybasolt porphyrylaccollth of CarrizoMountain;. the rocks are: andminette~. Rhyolite, trachyte; latite, and andeslte alkalineand arecharacterized by a hlghcontent of i occurin the coreof MountTaylor and makeup the potasheven though the content of silicais low.ThoUgh greaterproportion of therocks of theJemez and San identicalmineraiogically I theflaw rocks are called JuanMountains. The larger intrusive bodies are of trachybasalt,andthe dike rocks are called minette, I dioriticor monZonlticcomposition, whichis a basaltic-appearingrackwith abundant biotite i ! i 119 II NEW MEXICO GEOLOGICAL SOCIETY * SECOND FIELD CONFERENCE * SAN JUAN BASIN II ! flakes.Most of thevolcanic necks contain large rockfragments from the pre-Cambrlanbasement. This amountsof fragmentsof pre-Cambrianbasement rocks andother igneous masses are the source of thepyrope andsome consist largely of sedimentaryrock debris, garnetsand the olivine or perldotcrystals that are g Fromdata in theHopl Buttes area in Arizona,it is foundin thisregion. Zilditloi Mountain has a lava judgedthat the age of mostif notall of theseigneous cap250 feetthick composed of trachybasalt.Fluted bodiesis Pliocene.Notes on the variousbodlesltaken Rockis a smalllaccolith of minette. fromWilliams’ account follow. :. Thevolcanic necks in theChuska Valley along The Carrizolaccolith which cove~s an areaof the highwaybetween Gallup and Shlprockare perhaps 100square miles is theonly large intrusive body in themost striking of all.Shiprock, which rises over Ii thegroup on thewest side Of theBasin. It consists 1400feet above its base is composedof tuff-breccla II entirelyof dioriteporphyry in whichthere are large traversedby a few dikesof minette.The crudebedding phen0crystsof hornblende and andeslne and smaller of thetuff-breccia andits dip toward the center suggest quartzandbiotiteina microgranularintergrowthof thatthere were probably no lavaflows from this neck. g II quartzand orthoclase. Theradiating en echelondikes of minetteare also a sourceof greatinterest. Bennett Peak and Ford Buttes Thedikes and necksin theRedrock Volley area, aremade up of fragmentsof sedimentaryrocks rarely / includingMitten Rock and ThumbRock, are composed morethan an inchin diameterand cutby a few small mainlyof minettelava rather than breccia, though dikesof mlnette. somesuch as ThumbRock contain many foreign in- clusions. The TwinCones near Gallup consist of 90 percent of co¯minutedCretaceous sandstone and onlya small II Igneousbodies in theChuska Mountains are both fractionof admixedminette. A few largeblocks of necksand remnants of flo~s.Black Pinnacle is a alaskiteand Jurassic sandstone as wellas other m neckof minette.Sandstone in contactwith it was sedimentaryrocks occur in thesenecks. I changedto quartziteor to buchite,a silica glass formedby meltingof thesandstone. Tubby Butte is Remnantsof basalticflows occur at PowellMoun - a neckcomposed of tuff-brecciacontaining large rainand LookoutMountain on eitherside of U.S. ¯ blocksof sandstoneand. shale. It is cutby a dikeof Highway66
Recommended publications
  • Chapter 2 Alaska’S Igneous Rocks
    Chapter 2 Alaska’s Igneous Rocks Resources • Alaska Department of Natural Resources, 2010, Division of Geological and Geophysical Surveys, Alaska Geologic Materials Center website, accessed May 27, 2010, at http://www.dggs.dnr.state.ak.us/?link=gmc_overview&menu_link=gmc. • Alaska Resource Education: Alaska Resource Education website, accessed February 22, 2011, at http://www.akresource.org/. • Barton, K.E., Howell, D.G., and Vigil, J.F., 2003, The North America tapestry of time and terrain: U.S. Geological Survey Geologic Investigations Series I-2781, 1 sheet. (Also available at http://pubs.usgs.gov/imap/i2781/.) • Danaher, Hugh, 2006, Mineral identification project website, accessed May 27, 2010, at http://www.fremontica.com/minerals/. • Digital Library for Earth System Education, [n.d.], Find a resource—Bowens reaction series: Digital Library for Earth System Education website, accessed June 10, 2010, at http://www.dlese.org/library/query.do?q=Bowens%20reaction%20series&s=0. • Edwards, L.E., and Pojeta, J., Jr., 1997, Fossils, rocks, and time: U.S. Geological Survey website. (Available at http://pubs.usgs.gov/gip/fossils/contents.html.) • Garden Buildings Direct, 2010, Rocks and minerals: Garden Buildings Direct website, accessed June 4, 2010, at http://www.gardenbuildingsdirect.co.uk/Article/rocks-and- minerals. • Illinois State Museum, 2003, Geology online–GeoGallery: Illinois State Museum Society database, accessed May 27, 2010 at http://geologyonline.museum.state.il.us/geogallery/. • Knecht, Elizebeth, designer, Pearson, R.W., and Hermans, Majorie, eds., 1998, Alaska in maps—A thematic atlas: Alaska Geographic Society, 100 p. Lillie, R.J., 2005, Parks and plates—The geology of our National parks, monuments, and seashores: New York, W.W.
    [Show full text]
  • Rocks and Geology: General Information
    Rocks and Geology: General Information Rocks are the foundation of the earth. Rock provides the firmament beneath our oceans and seas and it covers 28% of the earth's surface that we all call home. When we travel any distance in any given direction, it is impossible not to see the tremendous variety in color, texture, and shape of the rocks around us. Rocks are composed of one or more minerals. Limestone, for example, is composed primarily of the mineral calcite. Granite can be made up of the minerals quartz, orthoclase and plagioclase feldspars, hornblende, and biotite mica. Rocks are classified by their mineral composition as well as the environment in which they were formed. There are three major classifications of rocks: igneous, sedimentary and metamorphic. A question: Which kind of rock came first? Think about it....... The following sections describe the conditions and processes that create the landscape we admire and live on here on "terra firma." IGNEOUS ROCKS The millions of tons of molten rock that poured out of the volcano Paracutin in Mexico, and from the eruption of Mount St. Helens in Washington State illustrate one of the methods of igneous rock formation. Igneous (from fire) rocks are formed when bodies of hot liquid rock called magma located beneath the earth's crust, find their way upward through the crust by way of fissures or faults. If the magma reaches the earth's surface, it forms extrusive igneous rocks or volcanic rocks. If the magma cools before it reaches the surface, it forms bodies of rock called intrusive igneous rocks or plutonic rocks.
    [Show full text]
  • A) Diorite B) Gabbro C) Andesite D) Pumice 1. the Photograph Below
    1. The photograph below shows an igneous rock with 4. The photograph below shows the intergrown crystals mineral crystals ranging in size from 2 to 6 of a pegmatite rock. millimeters. The rock is composed of 58% plagioclase feldspar, 26% amphibole, and 16% biotite. What is the name of this rock? A) diorite B) gabbro Which characteristic provides the best evidence that this pegmatite solidified deep underground? C) andesite D) pumice 2. Which igneous rock is dark colored, cooled rapidly on A) low density Earth's surface, and is composed mainly of B) light color plagioclase feldspar, olivine, and pyroxene? C) felsic composition D) very coarse texture A) obsidian B) rhyolite C) gabbro D) scoria 3. Which intrusive igneous rock could be composed of approximately 60% pyroxene, 25% plagioclase feldspar, 10% olivine, and 5% amphibole? A) granite B) rhyolite C) gabbro D) basalt 5. The graph below shows the relationship between the cooling time of magma and the size of the crystals produced. Which graph correctly shows the relative positions of the igneous rocks granite, rhyolite, and pumice? A) B) C) D) 6. The diagrams below show the crystals of four different rocks viewed through the same hand lens. Which crystals most likely formed from molten material that cooled and solidified most rapidly? A) B) C) D) 7. "Which granite sample most likely formed from magma that cooled and solidified at the slowest rate?" A) " " B) " " C) " " D) " " Base your answers to questions 8 and 9 on the diagram below and on your knowledge of Earth science. The diagram represents a portion of the scheme for igneous rock identification.
    [Show full text]
  • General Geology of the Franklin Mountains, El Paso County, Texas
    THE GENERAL GEOLOGY OF THE FRANKLIN MOUNTAINS, EL PASO COUNTY, TEXAS EL PASO GEOLOGICAL SOCIETY AND PERMIAN BASIN SOCIETY OF ECONOMIC PALEONTOLOGISTS AND MINERALOGISTS FEBRUARY 24, 1968 Society Members Permian Basin Section El Paso Geological Society Society of Economic Paleontologists and Mineralogists Robert Habbit, President W.F. Anderson, President David V. LeMone, Vice President Richard C. Todd, First Vice President Karl W. Klement, Second Vice President Charles Crowley, Secretary Kenneth O. Sewald, Secretary William S. Strain Gerald L. Scott, Treasurer Editor and Coordinator: David V. LeMone ii TABLE OF CONTENTS Page Introduction ............................................................................. ii Robert Habbit General Geology of the Franklin Mountains: Road Log .......................................... 1 David V. LeMone Precambrian Rocks of the Fusselman Canyon Area ............................................. 12 W.N. McAnulty, Jr. Paleoecology of a Canadian (Lower Ordovician) Algal Complex .................................. 15 David V. LeMone Late Paleozoic in the El Paso Border Region .................................................. 16 Frank E. Kottlowski Late Cenozoic Strata of the El Paso Area ..................................................... 17 William S.Strain A Preliminary Note on the Geology of the Campus “Andesite .................................... 18 Jerry M. Hoffer Conjectural Dating by Means of Gravity Slide Masses of Cenozoic Tectonics of the Southern Franklin Mountains, El Paso County, Texas ..........................................
    [Show full text]
  • Petrography and Engineering Properties of Igneous Rocks
    ENGINEERil~G MONOGRAPHS No. I United States Department of the Interior BUREAU OF RECLAMATION PETROGRAPIIY AND ENGINEERING· PROPER11ES OF IGNEOUS ROCKS hy Rit~bard C. 1\lielenz Denver, Colorado October 1948 95 cents (R.evised September 1961) United States Department of the Interior STEWART L. UDALL, Secretacy Bureau of Reclamation FLOYD E. DOMINY, Commissioner G~T BLOODGOOD, Assistant Commissioner and Chief Engineer Engineering Monograph No. 1 PETROGRAPHY AND ENGINEERING PROPERTIRES ·OF IGNEOUS RO<;:KS by Richard C. Mielenz Revised 1959. by William Y. Holland Head. Petrographic Laboratory Section Chemical Engineering Laboratory Branch Commissioner's Office. Denver Technical Infortnation Branch Denver Federal Center Denver, Colorado ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in Government and private agencies. Their purpose is to record devel­ opments, innovations, .and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Rec­ lamation structures and equipment. Copies 'may be obtained from the Bureau of Recla- · mation, Denver Federal Center, Denver, Colon.do, and Washington, D. C. Excavation and concreting of altered zones in rhyolite dike in the spillway foundation. Davis Damsite. Arizona-Nevada. Fl'ontispiece CONTENTS Page Introduction . 1 General Basis of Classification of Rocks . 1 Relation of the Petrographic Character to the Engineering Properties of Rocks . 3 Engineering J?roperties of Igneous Rocks ................................ :. 4 Plutonic Rocks . 4 Hypabyssal Rocks . 6 Volcanic Rocks..... 7 Application of Petrography to Engineering Problems of the Bureau of Reclamation . 8 A Mineralogic and Textural Classification of Igneous Rocks .
    [Show full text]
  • Andesites on Mars: Implications for the Origin of Terrestrial Continental Crust
    ANDESITES ON MARS: IMPLICATIONS FOR THE ORIGIN OF TERRESTRIAL CONTINENTAL CRUST. Paul D. Lowman Jr., Mail Code 921, NASA Goddard Space Flight Center, Greenbelt MD 20771, USA. The Alpha Proton X-ray Spectrometer ferentiation" in Mars has been confirmed by (APXS) on the Mars Pathfinder rover the SNC meteorites. Unlike the Earth, this (Rieder et al., 1997) produced analyses in evolutionary path has not involved plate the X-ray mode of 5 rocks with chemical tectonics, beyond the initial crustal fragmen- compositions (62.0+2.7% SiO2 "soil-free tation indicated by the Valles Marineris and rock") corresponding to andesite. The similar features. APXS soil analyses resemble those from the The bulk chemical composition of the Viking landers, providing a field compari- crust of Venus is not known, although ba- son. Furthermore, the Mariner 9 mission in salts have been found by two Soviet landers. 1972 had produced thermal emission spectra However, the unimodal topography of Ve- of suspended dust indicating a composition nus, and the typically continental tectonic averaging 60+10% SiO2, corresponding to style revealed by the Magellan radar "an intermediate igneous rock"(Hanel et al., (Solomon et al., 1992), are consistent with 1972a,) and implying "substantial geo- global differentiation, but as for Mars, with- chemical differentiation of Mars." An iden- out the involvement of plate tectonic proc- tical instrument on a Nimbus satellite had esses. previously produced similar dust spectra Collectively, these discoveries imply that over Africa (Hanel et al., 1972b), which,if silicate planets can undergo early global representative of the surface, support the differentiation by igneous processes not de- similarity between the terrestrial and mar- pending on sea-floor spreading and subduc- tian crusts.
    [Show full text]
  • IGNEOUS ROCKS BEGIN WHAT IS an IGNEOUS ROCK? an Igneous Rock Is a Rock That Has Formed from the Cooling and Solidification of Magma Or Lava
    IGNEOUS ROCKS BEGIN WHAT IS AN IGNEOUS ROCK? An igneous rock is a rock that has formed from the cooling and solidification of magma or lava. LAST NEXT MAGMA LAVA Melted rock Melted rock that is beneath that is at or the surface of near the surface the Earth. of the Earth. LAST NEXT Lava Magma LAST NEXT LAST NEXT LAST NEXT TYPES OF IGNEOUS ROCKS Igneous rocks are classified according to where they cooled and solidified. LAST NEXT INTRUSIVE EXTRUSIVE IGNEOUS ROCKS IGNEOUS ROCKS Rocks that form Rocks that form from magma from lava cooling and cooling and solidifying while solidifying while still inside the at or near the Earth Earth LAST NEXT Rock Cycle in Earth’s Crust Relationship of Transported r Dep Particle Size to Water Velocity d/o osi an an tion 100.0 ion n d Bu ct atio ria Boulders pa nt l m e o em 25.6 C C 10.0 Cobbles SEDIMENTS 6.4 E (cm) SEDIMENTARY n r o o i 1.0 Pebbles ROCK s s o H ( i We Up o r e a lift n th ) E a e M rin 0.2 t g & & e E a ro M s l ion g 0.1 n t i ) n e n d i t f r t Pre g r s / d/o sur i a n e l o a at e Sand m e p r H ph h amor ism t P t e U o M a ( r r e 0.01 p e h s W 0.006 i s n s ) o u ft i m li s r p ro e (U IGNEOUS & E Silt g DIAMETER PARTICLE erin ROCK 0.001 ath We g eltin 0.0004 METAMORPHIC M n o Clay ROCK ti a 0.0001 c 1 100 1000 10 i 0.01 0.05 0.1 0.5 500 f 5 50 di M oli el S ting MAGMA STREAM VELOCITY (cm/s) This generalized graph shows the water velocity needed to maintain, but not start, movement.
    [Show full text]
  • Review Komatiites: from Earth's Geological Settings to Planetary
    Running Head: Komatiites: geological settings to astrobiological contexts Review Komatiites: From Earth’s Geological Settings to Planetary and Astrobiological Contexts Delphine Nna-Mvondo1 and Jesus Martinez-Frias1 1 Planetary Geology Laboratory, Centro de Astrobiologia (CSIC/INTA), associated to NASA Astrobiology Institute, Ctra. De Ajalvir, km 4. 28850 Torrejon de Ardoz, Madrid, Spain. Correspondence: Laboratorio de Geología Planetaria, Centro de Astrobiología (CSIC/INTA), associated to NASA Astrobiology Institute, Instituto Nacional de Técnica Aeroespacial, Ctra. De Ajalvir, km 4. 28850 Torrejón de Ardoz, Madrid, Spain. Phone: +34 915206434 Fax: +34 915201074 E-mail: [email protected] 1 ABSTRACT Komatiites are fascinating volcanic rocks. They are among the most ancient lavas of the Earth following the 3.8 Ga pillow basalts at Isua and they represent some of the oldest ultramafic magmatic rocks preserved in the Earth’s crust at 3.5 Ga. This fact, linked to their particular features (high magnesium content, high melting temperatures, low dynamic viscosities, etc.), has attracted the community of geoscientists since their discovery in the early sixties, who have tried to determine their origin and understand their meaning in the context of terrestrial mantle evolution. In addition, it has been proposed that komatiites are not restricted to our planet, but they could be found in other extraterrestrial settings in our Solar System (particularly on Mars and Io). It is important to note that komatiites may be extremely significant in the study of the origins and evolution of Life on Earth. They not only preserve essential geochemical clues of the interaction between the pristine Earth rocks and atmosphere, but also may have been potential suitable sites for biological processes to develop.
    [Show full text]
  • Geology Tour Glossary
    GEOLOGY TOUR GLOSSARY ABRASION - a form of mechanical weathering involving the scraping of a rock surface by friction between rocks and moving particles during their transport by wind, glaciers, waves, gravity, running water, or erosion BIOLOGICAL WEATHERING – a type of chemical weathering in which biologically produced chemicals breakdown rocks, soils and minerals BIOTITE - a common dark-brown, dark-green, or black mineral of the mica group CHEMICAL WEATHERING - the direct effect of atmospheric and/or biological chemicals on the breakdown of rocks, soils and minerals COUNTRY ROCK - rock that is native to an area EXFOLIATION - the process in which rocks weather by peeling off in sheets rather that eroding grain by grain FALL ZONE - the geomorphologic break between an upland region of relatively hard crystalline basement rock and a coastal plain of softer sedimentary rock; distinguished by a drop in elevation and waterfalls in rivers FAULT - a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement FELDSPAR - an abundant, rock-forming mineral that varies in color from pink, yellow-orange, tan-white. Large bits often have squared edges. About 60 percent of the Earth's outer crust is composed of feldspar GEOLOGY - the study of the history and structure of the Earth, the rocks that the Earth is made of, and the processes that form and change the rocks GNEISSIC BANDING - a type of foliation in metamorphic rock consisting of roughly parallel dark and light bands of rock GRANITE - a hard, granular, igneous rock, formed as magma solidifies far below the earth’s surface.
    [Show full text]
  • Igneous Rocks
    What is Igneous Rock? Earth’s crust is 4/5 igneous rock. Every igneous rock begins life as molten magma deep in the mantle. As magma migrates toward the surface, some of it chills and hardens Igneous underground into granite and other types of igneous rocks. Rocks Magma that makes it to the surface erupts in either flowing or explosive volcanoes, generating lava, geysers, and hot springs. http://www.soest.hawaii.edu/coasts/lecture/gg101/index.html Igneous rock crystallizes in Earth’s magma locations Extrusive igneous rock Intrusive igneous rock crystallizes within Earth’s crust. Intrusive igneous rock Extrusive igneous rock crystallizes upon Earth’s crust. 1 As magma crystallizes a network of interlocking Igneous Rocks minerals develops. The composition and • Igneous Rocks are named on the basis of texture of the resulting rock is determined by the ir tttexture and composition. these minerals. Composition of a rock is the assemblage of minerals it contains. Texture of a rock is the size and arrangement of the minerals it contains. Texture Texture Aphanitic texture - mineral grains too small to see with the unaided eye (Basalt) Phaneritic texture - with large minerals (Granite) Large crystals had a long time to crystallize. Small crystals had a short time to crystallize. Therefore, this is an intrusive rock Therefore, this is an extrusive rock 2 Texture Texture Glassy texture - without Vesicular texture – many pits obvious minerals (Obsidian) from gas escape (Basalt) No crystals. This is an extrusive rock. Extrusive rock. Composition Texture
    [Show full text]
  • Igneous Rock Associations 4. Oceanic Island Volcanism I Mineralogy and Petrology John D
    Document generated on 10/02/2021 12:12 a.m. Geoscience Canada Igneous Rock Associations 4. Oceanic Island Volcanism I Mineralogy and Petrology John D. Greenough, Jaroslav Dostal and Leanne M. Mallory-Greenough Volume 32, Number 1, March 2005 Article abstract Oceanic islands tend to occur at the young ends of hotspot trails because they URI: https://id.erudit.org/iderudit/geocan32_1ser01 record the passage of oceanic plates over rising convection cells (plumes) in the mantle, or the propagation of cracks in the lithosphere. Basaltic volcanism on See table of contents oceanic islands is generally unexplosive and, although potentially destructive, poses less threat to human life than volcanism in other tectonic environments. However, the possibility of giant tsunamis from the catastrophic gravitational Publisher(s) collapse of islands is of real concern for major cities surrounding the ocean basins. The Geological Association of Canada Two series of magmas are recognized in oceanic islands. Tholeiites form at lower pressures than alkali basalts, from higher percentages of decompression ISSN melting. The former contain a low-Ca pyroxene and the latter can crystallize 0315-0941 (print) nepheline. Furthermore, minerals common to both series (chromite, olivine, 1911-4850 (digital) augite, plagioclase, magnetite and ilmenite) are compositionally distinct reflecting fundamental chemical differences between the two magma series. Explore this journal Mineral compositions vary as magmas evolve in sub-volcanic, lithospheric magma chambers by assimilation and differentiation. Magmas assimilate wall rocks in these chambers. Time-scales for differentiation (mostly crystal fractionation) are generally less than a few thousand years. Early olivine, Cite this article pyroxene, chromite and immiscible sulfide formation cause compatible Greenough, J.
    [Show full text]
  • Glossary of Geological Terms
    GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia).
    [Show full text]