Introduç˜Ao `A Teoria De Movimentos Ressonantes Em Sistemas

Total Page:16

File Type:pdf, Size:1020Kb

Introduç˜Ao `A Teoria De Movimentos Ressonantes Em Sistemas Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Raphael Alves Silva Introdu¸c~ao`aTeoria de Movimentos Ressonantes em Sistemas Planet´arios S~aoPaulo Raphael Alves Silva Introdu¸c~ao`aTeoria de Movimentos Ressonantes em Sistemas Planet´arios Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericasda Universidade de S~aoPaulo como requisito parcial para a ob- ten¸c~aodo t´ıtulode Mestre em Ci^encias. Area´ de Concentra¸c~ao:Astronomia Orientador(a): Prof.a Dr.a Tatiana Alexan- drova Michtchenko. Vers~aocorrigida. O original encontra-se dispon´ıvel na Unidade. S~aoPaulo Aos meus pais Agradecimentos A Deus, primeiramente, por me dar a for¸capara continuar, e a sabedoria necess´aria para trilhar o caminho. A` minha fam´ılia,por todo o apoio dedicado diante das escolhas que tomei em minha vida, desde o in´ıciode minha trajet´oriaacad^emica, quando trilhei os primeiros passos da carreira cient´ıfica.Por sempre terem acreditado em minha capacidade, e me estimulado a al¸carv^oosmaiores. A` professora Tatiana A. Michtchenko, por haver aceitado assumir o papel de ser minha orientadora e, ao longo desses dois anos, pela paci^encia,conselhos e aux´ıliosdurante o processo de desenvolvimento deste trabalho; por haver me indicado um caminho a tomar, nos momentos em que pensei haver chegado `abecos sem-sa´ıda. Aos professores Sylvio Ferraz-Mello e Ramachrisna Teixeira, por suas aulas, discuss~oes e ensinamentos, vozes de sabedoria e experi^enciae verdadeiras inspira¸c~oespara a minha carreira acad^emica. Aos colegas do IAG: Ronaldo e Douglas, com quem dividi o espa¸coda sala E-307, e que compartilharam comigo os questionamentos e discuss~oesque permeiam a cabe¸cado jovem pesquisador, seja no que tange os assuntos concernentes `apesquisa que desenvolvemos, seja quanto a assuntos muito mais profundos, perpectivas de carreira e vida profissional. Ao Paulo Jackson, que me acolheu e me deu muitas dicas sobre o Mestrado no IAG. Ao Hugo e ao Eduardo, membros mais experientes do grupo de Din^amicaOrbital, e que sempre se mostraram prontos a me auxiliar, no que fosse poss´ıvel. A` minha segunda fam´ılia,membros da Rep´ublicaTFP (Tradi¸c~ao,Fam´ıliae Proprie- dade), pelo `amor, carinho e dedica¸c~ao',e por haverem compartilhado de minhas ang´ustias acerca de meu trabalho e das dificuldades inerentes, e diante disso, haverem me apoiado e me aconselhado, ao longo de madrugadas regadas a cervejas e risadas. Minha gratid~ao aqui ´ededicada a Alda, Gustavo, Guilherme, Felipe e Irapuan. Ao IAG e seus funcion´arios,por contribuirem para o bom funcionamento da institui¸c~ao, e para a manuten¸c~aode um ambiente de trabalho agrad´avel. Esta tese/disserta¸c~aofoi escrita em LATEX com a classe IAGTESE, para teses e disserta¸c~oesdo IAG. \O pensamento n~aopassa de um clar~aona noite; mas esse clar~aorepresenta tudo." Henri Poincar´e(1854-1912) \For it is the duty of an astronomer to compose the history of the celestial motions through careful and expert study." Nicolaus Copernicus (1473-1543) Resumo Neste trabalho, desenvolvemos um modelo anal´ıtico para o potencial perturbador de um problema de tr^escorpos coplanar, utilizando o formalismo hamiltoniano expressado atrav´esdas coordenadas can^onicasde Jacobi. Consideramos um sistema de tr^esmassas pontuais, dentro de uma configura¸c~aode resson^ancia de movimentos m´ediosgeneralizada do tipo n1=n2 = (p + q)=p. Desenvolver um modelo anal´ıticose mostra vantajoso no sentido de possibilitar o melhor entendimento da din^amica dos fen^omenos que caracterizam um determinado sistema, a identifica¸c~aomais imediata das principais vari´aveis do problema, e a melhor caracteriza¸c~ao dos comportamentos poss´ıveis em fun¸c~aodestas ´ultimas. Aplicamos a metodologia cl´assicade expans~oesem s´eriesde pot^encias das excentrici- dades e semi-eixos maiores. Usando expans~oesem s´eriesde Taylor e Fourier, obtivemos a express~aocompleta para o potencial perturbador, em fun¸c~aodos elementos orbitais λi; $i; ai; ei, i = 1; 2. Os termos de curto per´ıodo foram eliminados por simples inspe¸c~ao visual, removendo as contribui¸c~oesadvindas de argumentos que continham os ^angulos r´apidos λ1 e λ2, exceto aqueles nos quais estavam contidos as combina¸c~oescr´ıticas. Esse processo de m´edia`manual' reduziu o sistema a um problema de dois graus de liberdade. O comportamento da fun¸c~aoanal´ıticadesenvolvida foi testado para o caso espec´ıfico de resson^ancia3:1. Nossos resultados foram comparados com `aqueles gerados atrav´esde um modelo semi-anal´ıticooutro, o qual tamb´emcomputa um Hamiltoniano m´ediopara um sistema ressonante. Abstract In this work we develop an analytical model for the disturbing potential of the pla- nar Three-Body problem, using the Hamiltonian formalism expressed in canonical Jacobi coordinates. We consider a system of massive points in a general mean motion resonant configuration of the general type n1=n2 = (p + q)=p. The development of an analytical model is very important once it allows us to better understand the dynamical phenomena of a system, identifying the main variables and the possible regimes of motion that the system may assume. As a methodology, we apply the classical method of expansions in power series of eccentricities and semi-major axes. Through the application of Taylor and Fourier series expansions, we obtain the exact expression for the disturbing potential as a function of the orbital elements λi; $i; ai; ei, i = 1; 2. The short-period terms were eliminated by removing those terms whose arguments were depending at least on one of the fast angles λ1 and λ2, except for those which contain the critical combination of the fast angles. This average process allows us to reduce the system to a two-degree-of-freedom problem. The behavior of the obtained analytical function is tested for the specific case of a 3:1 MMR. We compare the results with a semi-analytical model, which also gives the averaged Hamiltonian of a resonant system - in Jacobi coordinates. Lista de Figuras 2.1 Sistema exemplificando 4 corpos, com os vetores posi¸c~aodados dentro de um sistema de coordenadas inercial arbitr´ariocom origem em S. 29 2.2 Sistema de 4 corpos, com os vetores posi¸c~aodados em coordenadas referen- ciadas ao baricentro B do sistema. 31 2.3 Sistema de 4 corpos, com os vetores posi¸c~aodados em coordenadas referen- ciadas ao corpo de massa m0. ......................... 35 2.4 Sistema de 4 corpos, com os vetores posi¸c~aodados para um sistema de coordenadas de Jacobi. O ponto B1 ´eo baricentro de m0 e m1. B2 ´eo baricentro de m0, m1 e m2............................ 38 3.1 Representa¸c~aogr´aficado Problema de Tr^esCorpos, referenciado em um sistema inercial arbitr´ariode origem S..................... 53 3.2 Representa¸c~aogr´aficado sistema utilizando as coordenadas de Jacobi. O ponto CM indica a posi¸c~aodo centro de massa de m0 e m1; ´eo ^angulo entre formado entre os vetores posi¸c~aono sistema de Jacobi, r1 e r2; ri;j ´eo vetor de dist^anciaentre os repectivos corpos i e j. (Figura retirada da tese de Doutoramento de Eduardo A. Ines.) . 55 (j) 5.1 (a) Comportamento da s´eriedos coeficientes de Laplace b1=2(~α), 0 ≤ j ≤ 5, em termos do´ındice i; "2 ∼ 1 eα ~ = 0:48. Essas s´eries,que nada mais s~aoque P 2i os somat´oriosnas f´ormulas dos coeficientes i Biα , aparecem para a parte direta do potencial perturbador. (b) Comportamento da fun¸c~aoanal´ıtica dos coef. Laplace, em termos do par^ametro α, para distintos valores do ´ındice j...................................... 89 5.2 Curvas de < R > vs e2, para os valores de e1 conforme indicado. S~aoto- mados diferentes intervalos para os coeficientes n, j e N. K e AM s~ao ◦ ◦ constantes de movimento, σ1 = 90 , ∆$ = 0 . Em linha cont´ınua vermelha tem-se o compotamento do modelo semi-anal´ıticousado como padr~ao.. 91 5.3 Curvas de @ < R > =@e2 vs e2, tomadas para cada um dos casos de excen- tricidades e1 indicados. O modelo anal´ıticofoi computado novamente para diferentes configura¸c~oesde ordens em n, j e N. A linha vermelha cont´ınua novamente indica o comportamento utilizado como padr~ao,neste caso, a curva derivada num´erica.. 93 5.4 Curvas de < R > vs e2, tomadas para e1 = 0:005. Os gr´aficosindicam os valores m´aximosde harm^onicosconsiderados. A linha vermlha cont´ınua apresenta o comportamento do modelo padr~ao semi-anal´ıtico. 95 5.5 Curvas de < R > vs e2, tomadas para e1 = 0:4. Nesse caso, testamos diferentes configura¸c~oespara as ordens de expans~ao.. 96 5.6 Curvas de @ < R > =@e2 vs e2, para e1 = 0:005. 96 5.7 Curvas de @ < R > =@e2 vs e2, para e1 = 0:005. Aqui, mostramos as configura¸c~oesde ordem m´axima que podem ser adotadas, de maneira tal a obter-se a melhor correspond^enciaposs´ıvel com a curva padr~ao(vermelha cont´ınua). 97 5.8 Curvas de @ < R > =@e2 vs e2, para e1 = 0:4. 97 5.9 Curvas para a raz~aoentre os par^ametrosexterno e interno, γext/γint, se- guindo a nota¸c~aoque denominamos no Cap´ıtulo3, Se¸c~ao(3.1.1). 98 5.10 Planos representativos (e1; e2) tomados dentro da resson^anciaexata 3/1, para raz~oesde massa m2=m2: (a)0:1, (b)0:5 e (c)1. Os valores positivos (negativos) de e1 indicam que σ1 = 0 (π=2), enquanto que valores positivos (negativos) de e2 significam ∆$ = 0 (π).
Recommended publications
  • Enabling Science with Gaia Observations of Naked-Eye Stars
    Enabling science with Gaia observations of naked-eye stars J. Sahlmanna,b, J. Mart´ın-Fleitasb,c, A. Morab,c, A. Abreub,d, C. M. Crowleyb,e, E. Jolietb,f aEuropean Space Agency, STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA; bEuropean Space Agency, ESAC, P.O. Box 78, Villanueva de la Canada,˜ 28691 Madrid, Spain; cAurora Technology, Crown Business Centre, Heereweg 345, 2161 CA Lisse, The Netherlands; dElecnor Deimos Space, Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos, Madrid, Spain; eHE Space Operations BV, Huygensstraat 44, 2201 DK Noordwijk, The Netherlands; fCalifornia Institute of Technology, Pasadena, CA, 91125, USA ABSTRACT ESA’s Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G∼6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed. Keywords: Gaia, Astrometry, Proper motion, Parallax, Bright Stars, Extrasolar planets, CCD 1. INTRODUCTION There are about 6000 stars that can be observed with the unaided human eye. Greek astronomer Hipparchus used these stars to define the magnitude system still in use today, in which the faintest stars had an apparent visual magnitude of 6.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Gaia Search for Stellar Companions of TESS Objects of Interest
    Received 1 July 2020; Revised 29 August 2020; Accepted 18 September 2020 DOI: xxx/xxxx ARTICLE TYPE Gaia Search for stellar Companions of TESS Objects of Interest M. Mugrauer* | K.-U. Michel 1Astrophysikalisches Institut und Universitäts-Sternwarte Jena The first results of a new survey are reported, which explores the 2nd data release Correspondence of the ESA-Gaia mission, in order to search for stellar companions of (Community) M. Mugrauer, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, TESS Objects of Interest and to characterize their properties. In total, 193 binary and Schillergäßchen 2, D-07745 Jena, Germany. 15 hierarchical triple star systems are presented, detected among 1391 target stars, Email: [email protected] which are located at distances closer than about 500 pc around the Sun. The com- panions and the targets are equidistant and share a common proper motion, as it is expected for gravitationally bound stellar systems, proven with their accurate Gaia astrometry. The companions exhibit masses in the range between about 0.08 M⊙ and 3 M⊙ and are most frequently found in the mass range between 0.13 and 0.6 M⊙. The companions are separated from the targets by about 40 up to 9900 au, and their frequency continually decreases with increasing separation. While most of the detected companions are late K to mid M dwarfs, also 5 white dwarf companions were identified in this survey, whose true nature is revealed by their photometric properties. KEYWORDS: binaries: visual, white dwarfs, stars: individual (TOI 249 C, TOI 1259 B, TOI 1624 B, TOI 1703 B, CTOI 53309262 B) 1 INTRODUCTION explored the 2nd data release of the European Space Agency (ESA) Gaia mission (Gaia DR2 from hereon, Gaia Collabora- A key aspect in the diversity of exoplanets is the multiplicity tion, Brown, Vallenari, et al., 2018), which provides manifold of their host stars.
    [Show full text]
  • Precise Radial Velocities of Giant Stars
    A&A 555, A87 (2013) Astronomy DOI: 10.1051/0004-6361/201321714 & c ESO 2013 Astrophysics Precise radial velocities of giant stars V. A brown dwarf and a planet orbiting the K giant stars τ Geminorum and 91 Aquarii, David S. Mitchell1,2,SabineReffert1, Trifon Trifonov1, Andreas Quirrenbach1, and Debra A. Fischer3 1 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 2 Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA e-mail: [email protected] 3 Department of Astronomy, Yale University, New Haven, CT 06511, USA Received 16 April 2013 / Accepted 22 May 2013 ABSTRACT Aims. We aim to detect and characterize substellar companions to K giant stars to further our knowledge of planet formation and stellar evolution of intermediate-mass stars. Methods. For more than a decade we have used Doppler spectroscopy to acquire high-precision radial velocity measurements of K giant stars. All data for this survey were taken at Lick Observatory. Our survey includes 373 G and K giants. Radial velocity data showing periodic variations were fitted with Keplerian orbits using a χ2 minimization technique. Results. We report the presence of two substellar companions to the K giant stars τ Gem and 91 Aqr. The brown dwarf orbiting τ Gem has an orbital period of 305.5±0.1 days, a minimum mass of 20.6 MJ, and an eccentricity of 0.031±0.009. The planet orbiting 91 Aqr has an orbital period of 181.4 ± 0.1 days, a minimum mass of 3.2 MJ, and an eccentricity of 0.027 ± 0.026.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Feasibility of Spectro-Polarimetric Characterization of Exoplanetary Atmospheres with Direct Observing Instruments J
    A&A 599, A56 (2017) Astronomy DOI: 10.1051/0004-6361/201628206 & c ESO 2017 Astrophysics Feasibility of spectro-polarimetric characterization of exoplanetary atmospheres with direct observing instruments J. Takahashi1, T. Matsuo2, and Y. Itoh1 1 Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2, Nishigaichi, Sayo, 679-5313 Hyogo, Japan e-mail: [email protected] 2 Department of Earth and Space Science, Graduate School of Science, Osaka University 1–1, Machikaneyama-Cho, Toyonaka, 560-0043 Osaka, Japan Received 28 January 2016 / Accepted 9 November 2016 ABSTRACT Context. Spectro-polarimetry of reflected light from exoplanets is anticipated to be a powerful method for probing atmospheric composition and structure. Aims. We aim to evaluate the feasibility of the search for a spectro-polarimetric feature of water vapor using a high-contrast polari- metric instrument on a 30–40 m-class ground-based telescope. Methods. Three types of errors are considered: (a) errors from the difference between efficiencies for two orthogonally polarized states; (b) errors caused by speckle noises; and (c) errors caused by photon noise from scattered starlight. Using the analytically derived error formulas, we estimate the number of planets for which feasible spectro-polarimetric detection of water vapor is possible. Results. Our calculations show that effective spectro-polarimetric searches for water vapor are possible for 5 to 14 known planets. Spectro-polarimetric characterization of exoplanetary atmospheres is feasible with an extremely large telescope and a direct observing spectro-polarimeter. Key words. planetary systems – techniques: polarimetric – instrumentation: polarimeters 1. Introduction spectra were less clear. Similarly, Stam(2008) pointed out that the degree of polarization at the continuum wavelengths near a Spectro-polarimetric observations of visible or near-infrared re- molecular feature is more sensitive to the altitude of the cloud’s flected light from exoplanets can be a powerful tool for probing top compared with intensity.
    [Show full text]
  • Direct Detection of Exoplanets in the 3–10 Μm Range with E-ELT/METIS
    International Journal of Astrobiology 14 (2): 279–289 (2015) doi:10.1017/S1473550414000135 © Cambridge University Press 2014 Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS Sascha P. Quanz1, Ian Crossfield2, Michael R. Meyer1, Eva Schmalzl3 and Jenny Held4 1Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland e-mail: [email protected] 2Max Planck Institute for Astronomy, Konigstuhl 17, 69117 Heidelberg, Germany 3Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 4Department of Physics, ETH Zurich, 8093 Zurich, Switzerland Abstract: We quantify the scientific potential for exoplanet imaging with the mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the direct detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1–4R⊕) planets around the nearest stars. Under the assumptions made in our modelling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter. Many more suitable planets with dynamically determined masses are expected to be found in the coming years with the continuation of RV-surveys and the results from the GAIA astrometry mission. In addition, by extrapolating the statistics for close-in planets found by Kepler, we expect METIS might detect &10 small planets with equilibrium temperatures between 200 and 500 K around the nearest stars.
    [Show full text]
  • Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets
    Feasibility of Spectro-Polarimetric Detection of Atmospheric Components of Exoplanets Jun Takahashi (University of Hyogo) Taro Matsuo (Osaka University) Polarimetry for planets • Reflection makes polarization. Polarization of the reflected light from a planet has information of its atmosphere, clouds and surface. • Polarimetry has been a powerful method to investigate Solar-System objects. For example, polarimetry for Venus (e.g., Lyot 1929) played a key role to identify H2SO4 hazes by determining the size and refractive index of the reflecting particles. • As is for Solar-System planets, polarimetry for exoplanets may be a good diagnostic tool to know … • atmospheric composition • cloud/haze altitude (Stam 2004, 2008) • optical thickness of atmosphere ? (Takahashi+ 2013) • existence of a surface ocean ?? (McCullough 2006) Pol. spectra of planets • Model calculations 668 D. M. Stam et al.: Polarimetry to detect and characterize Jupiter-like extrasolar planets Earth-like planet, Stam(2008) Jupiter-like planet, Stam(2004) ) 0.20 1.0 % P ( a. b. CH3 features 0.8 0.15 F 0.6 H2O clear 0.10 O2 Flux model 1 0.4 0.05 model 2 low cloud model 3 0.2 Degree of polarization Deg. of polarization, P ofpolarization, Deg. high haze 0.00 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 WavelengthWavelength(nm) (µm) Wavelength (µm) Fig. 4. The flux F• andThe degree enhanced of polarization featuresP of are starlight explained reflected by by the three decrease Jupiter-like in EGPs intensity for α = of90 ◦the.Planetarymodelatmosphere1 (solid lines) containsmultiply only molecules, scattered model component 2 (dashed lines) at is the simila absorptionrtomodel1,exceptforatroposphericcloudlayer,andmodel3(dotted wavelengths as compared lines) is similar to modelwith 2, that except at for the a stratospheric continuum haze wavelengths layer.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • HD60532, a Planetary System in a 3: 1 Mean Motion Resonance
    Astronomy & Astrophysics manuscript no. hd60532˙vb c ESO 2018 November 1, 2018 Letter to the Editor HD60532, a planetary system in a 3:1 mean motion resonance. J. Laskar1 and A.C.M. Correia1,2 1 ASD, IMCCE, CNRS-UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Departamento de F´ısica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] Received ; accepted To be inserted later ABSTRACT In a recent paper it was reported a planetary system around the star HD 60532, composed by two giant planets in a possible 3:1 mean motion resonance, that should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system allows to confirm this resonance. The present best fit to data already corresponds to this resonant configuration and the system is stable for at least 5 Gry. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best fit solution and also if the inclination of the system orbital plane with respect to the plane of the sky is as small as 15◦. Moreover, if the inclination is taken as a free parameter in the adjustment to the observations, we find an inclination ∼ 20◦, which corresponds to Mb = 3.1 MJup and Mc = 7.4 MJup for the planetary companions. Key words. stars: individual: HD 60532 – stars: planetary systems – techniques: radial velocities 1. Introduction 2. Orbital solution for the HD 60532 system In a recent paper (Desort et al.
    [Show full text]
  • Direct Detection of Exoplanets in the 3–10 Μm Range with E-ELT/ METIS
    Research Collection Journal Article Direct detection of exoplanets in the 3–10 μm range with E-ELT/ METIS Author(s): Quanz, Sascha Patrick; Crossfield, Ian; Meyer, Michael R.; Schmalzl, Eva; Held, Jenny Publication Date: 2015-04 Permanent Link: https://doi.org/10.3929/ethz-b-000413377 Originally published in: International Journal of Astrobiology 14(2), http://doi.org/10.1017/S1473550414000135 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library International Journal of Astrobiology 14 (2): 279–289 (2015) doi:10.1017/S1473550414000135 © Cambridge University Press 2014 Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS Sascha P. Quanz1, Ian Crossfield2, Michael R. Meyer1, Eva Schmalzl3 and Jenny Held4 1Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland e-mail: [email protected] 2Max Planck Institute for Astronomy, Konigstuhl 17, 69117 Heidelberg, Germany 3Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 4Department of Physics, ETH Zurich, 8093 Zurich, Switzerland Abstract: We quantify the scientific potential for exoplanet imaging with the mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the direct detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1–4R⊕) planets around the nearest stars. Under the assumptions made in our modelling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter.
    [Show full text]
  • Caracterizaç˜Ao Dinâmica Dos Sistemas Múltiplos De Planetas
    Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Victor Hugo da Cunha Oliveira Caracteriza¸c~aodin^amicados sistemas m´ultiplosde planetas extrassolares S~aoPaulo abril de 2010 Victor Hugo da Cunha Oliveira Caracteriza¸c~aodin^amicados sistemas m´ultiplosde planetas extrassolares Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısicae Ci^encias Atmosf´ericas da Universidade de S~aoPaulo como parte dos requisitos para a obten¸c~aodo t´ıtulode Mestre em Ci^encias. Mestrado em Astronomia Orientadora: Profa. Dra. Tatiana Alexandrovna Micht- chenko S~aoPaulo abril de 2010 Para a minha esposa, companheira para toda a vida. Agradecimentos Agrade¸coao Soberano Criador do Universo, acima de tudo, sempre. Agrade¸co`aminha esposa pela paci^encia,compreens~aoe carinho nas horas que dediquei a este Trabalho. Aos meus pais, que por toda a minha vida t^emme dado o suporte necess´arioem todas as etapas e circunst^ancias. A` minha orientadora desde o Trabalho de Gradua¸c~ao,e agora deste Mestrado, a Profa. Dra. Tatiana Alexandrova Michtchenko, por toda a aten¸c~ao,suporte e ensinamentos a mim transmitidos, ao Profo. Dr. Sylvio Ferraz-Mello, pelas aulas do Mestrado e por ter me apresentado e indicado `aProfessora Tatiana. Ao Prof◦ Dr. Roberto Boczko, Prof◦ Dr. Ramachrisna Teixeira e `aProfa. Dra. Silvia C. F. Rossi pelos ensinamentos durante o curso de Mestrado no IAG. Aos colegas Adrian Rodriguez Colucci, Alan Jorge Alves do Carmo, Eduardo Andrade Ines e Gleidson Gomes da Silva pelas discuss~oesprof´ıcuas,dicas e sugest~oes.Ao colega Marcos Tadeu dos Santos por ter recalculado dados para utiliza¸c~aonesta disserta¸c~ao.
    [Show full text]