Direct Detection of Exoplanets in the 3–10 Μm Range with E-ELT/METIS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Gaia Search for Stellar Companions of TESS Objects of Interest
Received 1 July 2020; Revised 29 August 2020; Accepted 18 September 2020 DOI: xxx/xxxx ARTICLE TYPE Gaia Search for stellar Companions of TESS Objects of Interest M. Mugrauer* | K.-U. Michel 1Astrophysikalisches Institut und Universitäts-Sternwarte Jena The first results of a new survey are reported, which explores the 2nd data release Correspondence of the ESA-Gaia mission, in order to search for stellar companions of (Community) M. Mugrauer, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, TESS Objects of Interest and to characterize their properties. In total, 193 binary and Schillergäßchen 2, D-07745 Jena, Germany. 15 hierarchical triple star systems are presented, detected among 1391 target stars, Email: [email protected] which are located at distances closer than about 500 pc around the Sun. The com- panions and the targets are equidistant and share a common proper motion, as it is expected for gravitationally bound stellar systems, proven with their accurate Gaia astrometry. The companions exhibit masses in the range between about 0.08 M⊙ and 3 M⊙ and are most frequently found in the mass range between 0.13 and 0.6 M⊙. The companions are separated from the targets by about 40 up to 9900 au, and their frequency continually decreases with increasing separation. While most of the detected companions are late K to mid M dwarfs, also 5 white dwarf companions were identified in this survey, whose true nature is revealed by their photometric properties. KEYWORDS: binaries: visual, white dwarfs, stars: individual (TOI 249 C, TOI 1259 B, TOI 1624 B, TOI 1703 B, CTOI 53309262 B) 1 INTRODUCTION explored the 2nd data release of the European Space Agency (ESA) Gaia mission (Gaia DR2 from hereon, Gaia Collabora- A key aspect in the diversity of exoplanets is the multiplicity tion, Brown, Vallenari, et al., 2018), which provides manifold of their host stars. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
HD60532, a Planetary System in a 3: 1 Mean Motion Resonance
Astronomy & Astrophysics manuscript no. hd60532˙vb c ESO 2018 November 1, 2018 Letter to the Editor HD60532, a planetary system in a 3:1 mean motion resonance. J. Laskar1 and A.C.M. Correia1,2 1 ASD, IMCCE, CNRS-UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Departamento de F´ısica, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] Received ; accepted To be inserted later ABSTRACT In a recent paper it was reported a planetary system around the star HD 60532, composed by two giant planets in a possible 3:1 mean motion resonance, that should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system allows to confirm this resonance. The present best fit to data already corresponds to this resonant configuration and the system is stable for at least 5 Gry. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best fit solution and also if the inclination of the system orbital plane with respect to the plane of the sky is as small as 15◦. Moreover, if the inclination is taken as a free parameter in the adjustment to the observations, we find an inclination ∼ 20◦, which corresponds to Mb = 3.1 MJup and Mc = 7.4 MJup for the planetary companions. Key words. stars: individual: HD 60532 – stars: planetary systems – techniques: radial velocities 1. Introduction 2. Orbital solution for the HD 60532 system In a recent paper (Desort et al. -
Direct Detection of Exoplanets in the 3–10 Μm Range with E-ELT/ METIS
Research Collection Journal Article Direct detection of exoplanets in the 3–10 μm range with E-ELT/ METIS Author(s): Quanz, Sascha Patrick; Crossfield, Ian; Meyer, Michael R.; Schmalzl, Eva; Held, Jenny Publication Date: 2015-04 Permanent Link: https://doi.org/10.3929/ethz-b-000413377 Originally published in: International Journal of Astrobiology 14(2), http://doi.org/10.1017/S1473550414000135 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library International Journal of Astrobiology 14 (2): 279–289 (2015) doi:10.1017/S1473550414000135 © Cambridge University Press 2014 Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS Sascha P. Quanz1, Ian Crossfield2, Michael R. Meyer1, Eva Schmalzl3 and Jenny Held4 1Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland e-mail: [email protected] 2Max Planck Institute for Astronomy, Konigstuhl 17, 69117 Heidelberg, Germany 3Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands 4Department of Physics, ETH Zurich, 8093 Zurich, Switzerland Abstract: We quantify the scientific potential for exoplanet imaging with the mid-infrared E-ELT Imager and Spectrograph (METIS) foreseen as one of the instruments of the European Extremely Large Telescope (E-ELT). We focus on two main science cases: (1) the direct detection of known gas giant planets found by radial velocity (RV) searches; and (2) the direct detection of small (1–4R⊕) planets around the nearest stars. Under the assumptions made in our modelling, in particular on the achievable inner working angle and sensitivity, our analyses reveal that within a reasonable amount of observing time METIS is able to image >20 already known, RV-detected planets in at least one filter. -
Caracterizaç˜Ao Dinâmica Dos Sistemas Múltiplos De Planetas
Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Victor Hugo da Cunha Oliveira Caracteriza¸c~aodin^amicados sistemas m´ultiplosde planetas extrassolares S~aoPaulo abril de 2010 Victor Hugo da Cunha Oliveira Caracteriza¸c~aodin^amicados sistemas m´ultiplosde planetas extrassolares Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısicae Ci^encias Atmosf´ericas da Universidade de S~aoPaulo como parte dos requisitos para a obten¸c~aodo t´ıtulode Mestre em Ci^encias. Mestrado em Astronomia Orientadora: Profa. Dra. Tatiana Alexandrovna Micht- chenko S~aoPaulo abril de 2010 Para a minha esposa, companheira para toda a vida. Agradecimentos Agrade¸coao Soberano Criador do Universo, acima de tudo, sempre. Agrade¸co`aminha esposa pela paci^encia,compreens~aoe carinho nas horas que dediquei a este Trabalho. Aos meus pais, que por toda a minha vida t^emme dado o suporte necess´arioem todas as etapas e circunst^ancias. A` minha orientadora desde o Trabalho de Gradua¸c~ao,e agora deste Mestrado, a Profa. Dra. Tatiana Alexandrova Michtchenko, por toda a aten¸c~ao,suporte e ensinamentos a mim transmitidos, ao Profo. Dr. Sylvio Ferraz-Mello, pelas aulas do Mestrado e por ter me apresentado e indicado `aProfessora Tatiana. Ao Prof◦ Dr. Roberto Boczko, Prof◦ Dr. Ramachrisna Teixeira e `aProfa. Dra. Silvia C. F. Rossi pelos ensinamentos durante o curso de Mestrado no IAG. Aos colegas Adrian Rodriguez Colucci, Alan Jorge Alves do Carmo, Eduardo Andrade Ines e Gleidson Gomes da Silva pelas discuss~oesprof´ıcuas,dicas e sugest~oes.Ao colega Marcos Tadeu dos Santos por ter recalculado dados para utiliza¸c~aonesta disserta¸c~ao. -
Multi-Planet Extrasolar Systems – Detection and Dynamics
Research in Astron. Astrophys. 2012 Vol. 12 No. 8, 1044–1080 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and Astrophysics Multi-planet extrasolar systems – detection and dynamics Cristian Beaug´e1, Sylvio Ferraz-Mello2 and Tatiana A. Michtchenko2 1 Instituto de Astronom´ıa Te´orica y Experimental, Observat´orio Astron´omico de C´ordoba, Universidad de C´ordoba, Argentina; [email protected] 2 Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas, Universidade de S˜ao Paulo, Brasil; [email protected]; [email protected] Received 2012 July 9; accepted 2012 July 16 Abstract 20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large- scale orbital migration. The first part of this paper reviews the main detection tech- niques employed for the detection and orbital characterization of multiple-planet sys- tems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamicalevolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hi- erarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple ana- lytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. -
Introduç˜Ao `A Teoria De Movimentos Ressonantes Em Sistemas
Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Raphael Alves Silva Introdu¸c~ao`aTeoria de Movimentos Ressonantes em Sistemas Planet´arios S~aoPaulo Raphael Alves Silva Introdu¸c~ao`aTeoria de Movimentos Ressonantes em Sistemas Planet´arios Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericasda Universidade de S~aoPaulo como requisito parcial para a ob- ten¸c~aodo t´ıtulode Mestre em Ci^encias. Area´ de Concentra¸c~ao:Astronomia Orientador(a): Prof.a Dr.a Tatiana Alexan- drova Michtchenko. Vers~aocorrigida. O original encontra-se dispon´ıvel na Unidade. S~aoPaulo Aos meus pais Agradecimentos A Deus, primeiramente, por me dar a for¸capara continuar, e a sabedoria necess´aria para trilhar o caminho. A` minha fam´ılia,por todo o apoio dedicado diante das escolhas que tomei em minha vida, desde o in´ıciode minha trajet´oriaacad^emica, quando trilhei os primeiros passos da carreira cient´ıfica.Por sempre terem acreditado em minha capacidade, e me estimulado a al¸carv^oosmaiores. A` professora Tatiana A. Michtchenko, por haver aceitado assumir o papel de ser minha orientadora e, ao longo desses dois anos, pela paci^encia,conselhos e aux´ıliosdurante o processo de desenvolvimento deste trabalho; por haver me indicado um caminho a tomar, nos momentos em que pensei haver chegado `abecos sem-sa´ıda. Aos professores Sylvio Ferraz-Mello e Ramachrisna Teixeira, por suas aulas, discuss~oes e ensinamentos, vozes de sabedoria e experi^enciae verdadeiras inspira¸c~oespara a minha carreira acad^emica. -
Where Are the Distant Worlds? Star Maps
Where Are the Distant Worlds? Star Maps About the Activity Where are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only A small (red) flashlight • on how long you want to observe. • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Visible Stars With Planets 7 Star Maps 8 © 2013 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star. And I can tell you some about what those systems might look like. -
Kepler Star Wheels
FEBRUARY 2013 BER O M 25 5 C E 20 T T 5 10 1 O P B 1 E 10 5 E S R 2 5 0 2 2 5 3 3 3 T 0 3 2 5 N S 3 3 3 CORVUS O Virginis 61 U 5 1 V 1 0 G 2 1 Spica 3 E U HYRDA 3 0 M 1 1 3 5 a 3 B VIRGO 3 3 5 2 E 0 11 Com 11 70 Virginis 70 R 3 LIBRA LEO 2 3 2 Regulus 5 Boo 3 t 2 3 Leo BERENICES 3 2 3 2 1 5 3 0 2 g 2 COMA COMA 3 CANCER Arcturus SCORPIUS 2 1 3 2 Antares 3 0 2 5 3 3 D 3 3 2 3 3 3 2 3 MAJOR 3 3 E CORONA 3 BOREALIS 2 2 3 Y 3 2 1 URSA URSA 3 C 5 0 3 1 HD60532 3 3 3 2 L (Pollux) 2 2 E b Procyon 2 3 3 BOÖTES MINOR 3 2 Gem U CANIS CANIS 3 3 CrB 1 M Dra 0 k 2 5 1 i 2 2 2 3 J OPHIUCHUS 3 3 2 3 3 0 B 3 3 3 GEMINI 2 1 3 2 3 3 URSA MINOR URSA 2 3 E 3 0 2 5 2 3 3 3 3 HERCULES 2 MAJOR CANIS 3 3 3 3 2 R 3 3 Betelguese 3 7 DRACO Sirius -1 3 3 3 Canis Majoris 2 3 3 5 3 2 2 3 3 2 ORION 2 3 3 0 2 x Vega 3 3 2 Aql 5 3 Polaris 2 AURIGA Capella 3 42 3 Cep 2 1 3 g LYRA 2 0 3 3 3 3 Draconis 3 3 3 2 3 2 2 3 3 0 Algol 3 2 3 2 5 CASSIOPEIA 3 3 2 3 3 3 2 SAGITTARIUS 3 2 J 3 2 3 3 E 1 2 3 LEPUS Kepler Field of View 2 3 3 1 A 2 2 5 e 3 2 3 1 0 1 0 N 2 3 Tau 3 2 Rigel 3 21 PERSEUS CYGNUS 2 Altair N TAURUS 3 Deneb U 2 CEPHEUS 2 AQUILA 3 3 U 0 Pleiades 1 1 J And u 5 2 A 3 3 a R (Hamal) DELPHINUS 5 Ari ANDROMEDA 2 0 3 2 Y 3 2 3 2 2 2 e 3 Eridani 2 3 5 ARIES 3 3 PEGASUS ERIDANUS 3 5 3 2 3 3 F AQUARIUS 0 2 5 E CETUS CAPRICORNUS PISCES B 5 1 1 R 0 Y 3 U A 3 0 1 1 R 5 M A 2 5 1 2 2 0 R Y Fomalhaut 2 5 5 2 5 0 2 1 M 0 L 5 1 I ERSION EBRUARY A V : F 2013 1 5 R R 0 1 P 2 C 0 5 A H 2 5 INSTRUCTIONS FOR ASSEMBLING UNCLE AL’S KEPLER STAR WHEELS Step 1: Copy Star Wheel and Star Wheel Holder pages on heavy card- Step 3: On the Star Wheel Holder, stock or use glue stick or doublestick tape to adhere the pages fold along the 3 dotted lines. -
HD 60532, a Planetary System in a 3:1 Mean Motion Resonance
A&A 496, L5–L8 (2009) Astronomy DOI: 10.1051/0004-6361/200911689 & c ESO 2009 Astrophysics Letter to the Editor HD 60532, a planetary system in a 3:1 mean motion resonance J. Laskar1 and A. C. M. Correia1,2 1 ASD, IMCCE, CNRS-UMR8028, Observatoire de Paris, UPMC, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [email protected] 2 Departamento de Física, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] Received 20 January 2009 / Accepted 3 February 2009 ABSTRACT A recent paper has reported that there is a planetary system around the star HD 60532, composed of two giant planets in a possible 3:1 mean motion resonance, which should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system already allows this resonance to be confirmed. The present best fit to the data corresponds to this resonant configuration, and the system is stable for at least 5 Gyr. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best-fit solution and would also be if the inclination of the system orbital plane is as small as 15◦ with respect to the plane of the sky. Moreover, if the inclination is taken as a free parameter in the adjustment to observations, we find an inclination ◦ ∼20 , which corresponds to Mb = 3.1 MJup and Mc = 7.4 MJup for the planetary companions. Key words. stars: individual: HD 60532 – stars: planetary systems – techniques: radial velocities – methods: numerical 1. -
SAB C SAB 2010 ⋆ ⋆
Boletim ⋆ da ⋆ Boletim da Sociedade Astronˆomica Brasileira, 29, no.1, 26-53 SAB c SAB 2010 ⋆ ⋆ Naming the extrasolar planets W. Lyra American Museum of Natural History, 79th Street at Central Park West, New York, NY, 10024, USA e-mail: [email protected] Received January 14th 2010; accepted August 25th 2010 Resumo. Planetas extrassolares n˜ao s˜ao nomeados e s˜ao referenciados apenas pela sua designa¸c˜ao cient´ıfica. A raz˜ao apresentada pela UAI para n˜ao os nomear ´eque isso seria impratic´avel dado que os planetas devem ser comuns. Apresento algumas raz˜oes sobre porquˆeessa l´ogica ´einsustent´avel, e sugiro nomes para os 429 candidatos a planetas extrassolares conhecidos at´efevereiro de 2010. Os nomes seguem uma associa¸c˜ao com a constela¸c˜ao `aqual a estrela parental pertence e, desta forma, s˜ao em sua maioria retirados da mitologia greco-romana. Outras mitologias podem ser tamb´em usadas desde que uma associa¸c˜ao adequada seja estabelecida. Abstract. Extrasolar planets are not named and are referred to only by their assigned scientific designation. The reason given by the IAU to not name the planets is that it is considered impractical as planets are expected to be common. I advance some reasons as to why this logic is flawed, and suggest names for the 429 extrasolar planet candidates known as of Feb 2010. The names follow a scheme of association with the constellation that the host star pertains to, and therefore are mostly drawn from Roman-Greek mythology. Other mythologies may also be used given that a suitable association is established.