Statistical Distributions of Mean Motion Resonances and Near-Resonances in Multiplanetary Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enabling Science with Gaia Observations of Naked-Eye Stars
Enabling science with Gaia observations of naked-eye stars J. Sahlmanna,b, J. Mart´ın-Fleitasb,c, A. Morab,c, A. Abreub,d, C. M. Crowleyb,e, E. Jolietb,f aEuropean Space Agency, STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA; bEuropean Space Agency, ESAC, P.O. Box 78, Villanueva de la Canada,˜ 28691 Madrid, Spain; cAurora Technology, Crown Business Centre, Heereweg 345, 2161 CA Lisse, The Netherlands; dElecnor Deimos Space, Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos, Madrid, Spain; eHE Space Operations BV, Huygensstraat 44, 2201 DK Noordwijk, The Netherlands; fCalifornia Institute of Technology, Pasadena, CA, 91125, USA ABSTRACT ESA’s Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G∼6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed. Keywords: Gaia, Astrometry, Proper motion, Parallax, Bright Stars, Extrasolar planets, CCD 1. INTRODUCTION There are about 6000 stars that can be observed with the unaided human eye. Greek astronomer Hipparchus used these stars to define the magnitude system still in use today, in which the faintest stars had an apparent visual magnitude of 6. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Gaia Search for Stellar Companions of TESS Objects of Interest
Received 1 July 2020; Revised 29 August 2020; Accepted 18 September 2020 DOI: xxx/xxxx ARTICLE TYPE Gaia Search for stellar Companions of TESS Objects of Interest M. Mugrauer* | K.-U. Michel 1Astrophysikalisches Institut und Universitäts-Sternwarte Jena The first results of a new survey are reported, which explores the 2nd data release Correspondence of the ESA-Gaia mission, in order to search for stellar companions of (Community) M. Mugrauer, Astrophysikalisches Institut und Universitäts-Sternwarte Jena, TESS Objects of Interest and to characterize their properties. In total, 193 binary and Schillergäßchen 2, D-07745 Jena, Germany. 15 hierarchical triple star systems are presented, detected among 1391 target stars, Email: [email protected] which are located at distances closer than about 500 pc around the Sun. The com- panions and the targets are equidistant and share a common proper motion, as it is expected for gravitationally bound stellar systems, proven with their accurate Gaia astrometry. The companions exhibit masses in the range between about 0.08 M⊙ and 3 M⊙ and are most frequently found in the mass range between 0.13 and 0.6 M⊙. The companions are separated from the targets by about 40 up to 9900 au, and their frequency continually decreases with increasing separation. While most of the detected companions are late K to mid M dwarfs, also 5 white dwarf companions were identified in this survey, whose true nature is revealed by their photometric properties. KEYWORDS: binaries: visual, white dwarfs, stars: individual (TOI 249 C, TOI 1259 B, TOI 1624 B, TOI 1703 B, CTOI 53309262 B) 1 INTRODUCTION explored the 2nd data release of the European Space Agency (ESA) Gaia mission (Gaia DR2 from hereon, Gaia Collabora- A key aspect in the diversity of exoplanets is the multiplicity tion, Brown, Vallenari, et al., 2018), which provides manifold of their host stars. -
Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet. -
Kuchner, M. & Seager, S., Extrasolar Carbon Planets, Arxiv:Astro-Ph
Extrasolar Carbon Planets Marc J. Kuchner1 Princeton University Department of Astrophysical Sciences Peyton Hall, Princeton, NJ 08544 S. Seager Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington DC 20015 [email protected] ABSTRACT We suggest that some extrasolar planets . 60 ML will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk’s C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune- mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. arXiv:astro-ph/0504214v2 2 May 2005 Subject headings: astrobiology — planets and satellites, individual (Mercury, Jupiter) — planetary systems: formation — pulsars, individual (PSR 1257+12) — white dwarfs 1. INTRODUCTION The recent discoveries of Neptune-mass extrasolar planets by the radial velocity method (Santos et al. 2004; McArthur et al. 2004; Butler et al. 2004) and the rapid development 1Hubble Fellow –2– of new technologies to study the compositions of low-mass extrasolar planets (see, e.g., the review by Kuchner & Spergel 2003) have compelled several authors to consider planets with chemistries unlike those found in the solar system (Stevenson 2004) such as water planets (Kuchner 2003; Leger et al. -
Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars. -
Precise Radial Velocities of Giant Stars
A&A 555, A87 (2013) Astronomy DOI: 10.1051/0004-6361/201321714 & c ESO 2013 Astrophysics Precise radial velocities of giant stars V. A brown dwarf and a planet orbiting the K giant stars τ Geminorum and 91 Aquarii, David S. Mitchell1,2,SabineReffert1, Trifon Trifonov1, Andreas Quirrenbach1, and Debra A. Fischer3 1 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 2 Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA e-mail: [email protected] 3 Department of Astronomy, Yale University, New Haven, CT 06511, USA Received 16 April 2013 / Accepted 22 May 2013 ABSTRACT Aims. We aim to detect and characterize substellar companions to K giant stars to further our knowledge of planet formation and stellar evolution of intermediate-mass stars. Methods. For more than a decade we have used Doppler spectroscopy to acquire high-precision radial velocity measurements of K giant stars. All data for this survey were taken at Lick Observatory. Our survey includes 373 G and K giants. Radial velocity data showing periodic variations were fitted with Keplerian orbits using a χ2 minimization technique. Results. We report the presence of two substellar companions to the K giant stars τ Gem and 91 Aqr. The brown dwarf orbiting τ Gem has an orbital period of 305.5±0.1 days, a minimum mass of 20.6 MJ, and an eccentricity of 0.031±0.009. The planet orbiting 91 Aqr has an orbital period of 181.4 ± 0.1 days, a minimum mass of 3.2 MJ, and an eccentricity of 0.027 ± 0.026. -
Estudio Numérico De La Dinámica De Planetas
UNIVERSIDAD PEDAGOGICA´ NACIONAL FACULTAD DE CIENCIA Y TECNOLOG´IA ESTUDIO NUMERICO´ DE LA DINAMICA´ DE PLANETAS EXTRASOLARES Tesis presentada por Eduardo Antonio Mafla Mejia dirigida por: Camilo Delgado Correal Nestor Mendez Hincapie para obtener el grado de Licenciado en F´ısica 2015 Departamento de F´ısica I Dedico este trabajo a mi mam´a, quien me apoyo en mi deseo de seguir el camino de la educaci´on. Sin su apoyo este deseo no lograr´ıa ser hoy una realidad. RESUMEN ANALÍTICO EN EDUCACIÓN - RAE 1. Información General Tipo de documento Trabajo de Grado Acceso al documento Universidad Pedagógica Nacional. Biblioteca Central ESTUDIO NUMÉRICO DE LA DINÁMICA DE PLANETAS Título del documento EXTRASOLARES Autor(es) Mafla Mejia, Eduardo Antonio Director Méndez Hincapié, Néstor; Delgado Correal, Camilo Publicación Bogotá. Universidad Pedagógica Nacional, 2015. 61 p. Unidad Patrocinante Universidad Pedagógica Nacional DINÁMICA DE EXOPLANETAS, LEY GRAVITACIONAL DE NEWTON, Palabras Claves ESTUDIO NUMÉRICO. 2. Descripción Trabajo de grado que se propone evidenciar si el modelo matemático clásico newtoniano, y en consecuencia las tres leyes de Kepler, se puede generalizar a cualquier sistema planetario, o solo es válido para determinados casos particulares. Para lograr esto de comparar numéricamente los efectos de las diferentes correcciones que puede adoptar la ley de gravitación de Newton para modelar la dinámica de planetas extrasolares aplicándolos en los sistemas extrasolares Gliese 876 d, Gliese 436 b y el sistema Mercurio – Sol. En los exoplanetas examinados se encontró, que en un buen grado de aproximación, la dinámica de los exoplanetas se logran describir con el modelo newtoniano, y en consecuencia, modelar su movimiento usando las leyes de Kepler. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
Download This Article in PDF Format
A&A 635, A6 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936326 & c ESO 2020 Astrophysics MCMCI: A code to fully characterise an exoplanetary system? A. Bonfanti1 and M. Gillon2 1 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 19C Allée du 6 Août, 4000 Liège, Belgium e-mail: [email protected] 2 Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19, 4000 Liège, Belgium Received 16 July 2019 / Accepted 29 December 2019 ABSTRACT Context. Useful information can be retrieved by analysing the transit light curve of a planet-hosting star or induced radial velocity oscillations. However, inferring the physical parameters of the planet, such as mass, size, and semi-major axis, requires preliminary knowledge of some parameters of the host star, especially its mass or radius, which are generally inferred through theoretical evolu- tionary models. Aims. We seek to present and test a whole algorithm devoted to the complete characterisation of an exoplanetary system thanks to the global analysis of photometric or radial velocity time series combined with observational stellar parameters derived either from spectroscopy or photometry. Methods. We developed an integrated tool called MCMCI. This tool combines the Markov chain Monte Carlo (MCMC) approach of analysing photometric or radial velocity time series with a proper interpolation within stellar evolutionary isochrones and tracks, known as isochrone placement, to be performed at each chain step, to retrieve stellar theoretical parameters such as age, mass, and radius. Results. We tested the MCMCI on the HD 219134 multi-planetary system hosting two transiting rocky super Earths and on WASP-4, which hosts a bloated hot Jupiter. -
Occurrence and Core-Envelope Structure of 1–4× Earth-Size Planets
Occurrence and core-envelope structure of 1–4× SPECIAL FEATURE Earth-size planets around Sun-like stars Geoffrey W. Marcya,1, Lauren M. Weissa, Erik A. Petiguraa, Howard Isaacsona, Andrew W. Howardb, and Lars A. Buchhavec aDepartment of Astronomy, University of California, Berkeley, CA 94720; bInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822; and cHarvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board April 16, 2014 (received for review January 24, 2014) Small planets, 1–4× the size of Earth, are extremely common planets. The Doppler reflex velocity of an Earth-size planet − around Sun-like stars, and surprisingly so, as they are missing in orbiting at 0.3 AU is only 0.2 m s 1, difficult to detect with an − our solar system. Recent detections have yielded enough informa- observational precision of 1 m s 1. However, such Earth-size tion about this class of exoplanets to begin characterizing their planets show up as a ∼10-sigma dimming of the host star after occurrence rates, orbits, masses, densities, and internal structures. coadding the brightness measurements from each transit. The Kepler mission finds the smallest planets to be most common, The occurrence rate of Earth-size planets is a major goal of as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital exoplanet science. With three years of Kepler photometry in periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× hand, two groups worked to account for the detection biases in the incident stellar flux that warms our Earth. -
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.